Abstract:
An embodiment of an article includes a substrate and a conformal coating. The conformal coating includes a first particulate layer between a first matrix layer and a second matrix layer. The first particulate layer includes a first plurality of ordered inorganic particles spaced and distributed substantially uniformly throughout the first particulate layer, and a ceramic matrix material disposed between individual ones of the first plurality of particles.
Abstract:
Disclosed is a method for controlling a microstructure of an inorganic material includes providing a structure that has a first region of an inorganic material having a first microstructure and a second region that is thermally responsive to electromagnetic radiation, the second region being adjacent the first region, and indirectly heating the first region by thermally activating the second region, using electromagnetic radiation, to generate heat. The generated heat converts the first microstructure of the inorganic material to a second, different microstructure. The method can be applied to control a microstructure of an inorganic coating on an inorganic fiber.
Abstract:
A method of treating a preceramic material includes providing a preceramic polycarbosilane or polycarbosiloxane material that includes a moiety Si—O—M, where Si is silicon, O is oxygen and M is at least one metal that includes at least one transition metal, and thermally converting the preceramic polycarbosilane or polycarbosiloxane that includes the moiety Si—O—M material into a ceramic material.
Abstract:
Components with improved erosion resistance are disclosed. A surface of the component or a substrate of the component is modified by coating the substrate with an elastomer layer. The elastomer layer is then modified by embedding hard particles onto an outer side of the elastomer layer. The hard particles exhibit higher fractured toughness providing enhanced erosion protection. The elastic properties of the elastomer experience little reduction because the surface embedded particles are located only at the outer side or outer surface of the elastomer layer. Therefore, the bond between the inner side of the elastomer layer and the substrate or component surface is not interfered with and the potential for electro-chemical corrosion and poor adhesion are not increased by the presence of the hard particles as the hard particles are located away from the inner face between the elastomer layer and the substrate.
Abstract:
A method for fabricating a ceramic material includes providing a mobilized filler material capable of infiltrating a porous ceramic matrix composite. The mobilized filler material includes at least one of a ceramic material and a free metal. The mobilized filler material is infiltrated into pores of the porous ceramic matrix composite. The mobilized filler material is then immobilized within the pores of the porous ceramic matrix composite.
Abstract:
A ceramic article includes a ceramic matrix composite that has a porous reinforcement structure and a ceramic matrix within pores of the porous reinforcement structure. The ceramic matrix composite includes a surface zone comprised of an exterior surface of the ceramic matrix composite and pores that extend from the exterior surface into the ceramic matrix composite. A glaze material seals the surface zone within the pores of the surface zone and on the exterior surface of the surface zone as an exterior glaze layer on the ceramic matrix composite. The glaze material is a glass or glass-ceramic material. The ceramic matrix composite includes an interior zone under the surface zone, and the interior zone is free of any of the glaze material and has a greater porosity than the surface zone.
Abstract:
Disclosed is a modified preceramic polymer having a polymer backbone consisting of silicon or a combination of silicon and carbon; and a pendant modifier bonded to the backbone wherein the modifier includes silicon, boron, aluminum, a transition metal, a refractory metal, or a combination thereof. The modified preceramic polymer can be used to form a ceramic matrix composite.
Abstract:
A method of manufacturing a CMC structure includes infiltrating a porous substrate with a composite material and performing a first densification on the infiltrated porous substrate, forming a first densified porous substrate, wherein the first densification includes techniques selected from the group of techniques comprising photonic curing, photonic sintering, pulsed thermal heating, or combinations thereof.
Abstract:
Disclosed is a method of coating a high temperature fiber including depositing a base material on the high temperature fiber using atomic layer deposition, depositing an intermediate material precursor on the base material using molecular layer deposition, depositing a top material on the intermediate material precursor or the intermediate layer using atomic layer deposition, and heat treating the intermediate precursor. The intermediate material in the final coating includes a structural defect, has lower density than the top material or a combination thereof. Also disclosed are the coated high temperature fiber and a composite including the high temperature fiber.
Abstract:
Disclosed is a method of making high temperature fiber including incorporating an inorganic atom into a polymer precursor fiber to form a modified polymer precursor fiber and converting the modified polymer precursor fiber to a high temperature fiber having a bonded inorganic atom.