Abstract:
Techniques for optimizing CPU usage in a host system based on VM guest OS power and performance management are provided. In one embodiment, a hypervisor of the host system can capture information from a VM guest OS that pertains to a target power or performance state set by the guest OS for a vCPU of the VM. The hypervisor can then perform, based on the captured information, one or more actions that align usage of host CPU resources by the vCPU with the target power or performance state.
Abstract:
A computer system provides a mechanism for assuring a safe, non-preemptible access to a private data area (PRDA) belonging to a CPU. PRDA accesses generally include obtaining an address of a PRDA and performing operations on the PRDA using the obtained address. Safe, non-preemptible access to a PRDA generally ensures that a context accesses the PRDA of the CPU on which the context is executing, but not the PRDA of another CPU. While a context executes on a first CPU, the context obtains the address of the PRDA. After the context is migrated to a second CPU, the context performs one or more operations on the PRDA belonging to the second CPU using the address obtained while the context executed on the first CPU. In another embodiment, preemption and possible migration of a context from one CPU to another CPU is delayed while a context executes non-preemptible code.
Abstract:
A mapping table is passed to system software upon loading of the system software in a computer system. The mapping table is generated from a user-defined configuration file and maps device identifiers of various devices implemented in the computer system, as assigned by the device manufacturers, to device identifiers that are recognizable by the system software. The mapping is used by the system software when it performs binding of device drivers to devices so that devices that have been given generic and sometimes obscure names by the device manufacturers can still be associated with and bound to device drivers loaded by the system software.
Abstract:
A computer system that does not natively support non-maskable interrupts (NMIs) implements NMI-like functionality in a secure monitor. The computer system detects a high priority interrupt and determines whether or not interrupts are enabled or disabled. If interrupts are enabled, the computer system injects an exception into a currently executing thread of system software operating at the second privilege level, and an exception handler processes the exception like a standard exception. If interrupts are disabled, the computer system saves the current system state (e.g., the current program counter and CPU state) and values of one or more exception handling registers in temporary storage and injects an exception into the currently executing thread of the system software, and the exception handler processes the exception in a special manner.
Abstract:
System and method for creating and managing trusted execution environments (TEEs) using different underlying hardware TEE mechanisms use a virtual secure enclave device which runs in a virtualized environment in a computer system. The device enables an enclave command transmitted to the virtual secure enclave device to be retrieved and parsed to extract an enclave operation to be executed. A TEE backend module is used to interact with a particular hardware TEE mechanism among those available in the computer system. The module ensures the enclave operation for the software process is executed by the particular hardware TEE mechanism, or the TEE scheme based on a particular hardware TEE mechanism.
Abstract:
A combined data processing unit (DPU) and server solution with DPU operating system (OS) integration is described. A DPU OS is executed on a DPU or other computing device, where the DPU OS exercises secure calls provided by a DPU's trusted firmware component, that may be invoked by DPU OS components to abstract DPU vendor-specific and server vendor-specific integration details. An invocation of one of the secure calls made on the DPU to communicate with its associated server computing device is identified. In an instance in which the one of the secure calls is invoked, the secure call invoked is translated into a call or request specific to an architecture of the server computing device and the call is performed, which may include sending a signal to the server computing device in a format interpretable by the server computing device.
Abstract:
Boot failure protection on smartNICs and other computing devices is described. During a power-on stage of a booting process for a computing device, a boot loading environment is directed to install an application programming interface (API) able to be invoked to control operation of a hardware-implemented watchdog. During an operating system loading stage of the booting process, the application programming interface is invoked to enable the hardware-implemented watchdog. During an operating system hand-off stage of the booting process, a last watchdog refresh of the hardware-implemented watchdog is performed, and execution of the boot loading environment is handed off to a kernel boot loader of an operating system. The application programming interface may not be accessible after the hand off to the kernel boot loader.
Abstract:
Disclosed are various examples of hosting a data processing unit (DPU) management operating system using an operating system software stack of a preinstalled DPU operating system. The preinstalled DPU operating system of the DPU is leveraged to provide a virtual machine environment. A DPU management operating system is executed within the virtual machine environment of the preinstalled DPU operating system. A third-party DPU function or a management service function is provided using the DPU hardware resources accessed through the DPU management operating system and the virtual machine environment.
Abstract:
A hardware-assisted paravirtualized hardware watchdog is described that is used to detect and recover from computer malfunctions. A computing device determines that a hardware-implemented watchdog of the computing device does not comply with predetermined watchdog criteria, where the hardware-implemented watchdog is configured to send a reset signal when a first predetermined amount of time elapses without receipt of a first refresh signal. If the hardware-implemented watchdog does not comply with the predetermined watchdog criteria, a runtime watchdog service is initialized using a second predetermined amount of time. The runtime watchdog service is directed to periodically send the refresh signal to the hardware-implemented watchdog before an expiration of the first predetermined amount of time that causes the hardware-implemented watchdog to expire. The hardware-implemented watchdog is directed to send the reset signal when the second predetermined amount of time elapses without receipt of a second refresh signal.
Abstract:
System and method for providing secure execution environments in a computer system uses an enclave virtual computing instance to create a secure execution environment, which is deployed in response to a request for such a secure execution environment for content from a software process running in the computer system.