摘要:
A method of multi-antenna resource allocation for uplink channel sounding in a wireless communication system is provided. A base station (eNB) first selects a number of sounding reference signal (SRS) parameters. The eNB then determines each selected SRS parameter for a first antenna of a user equipment (UE) having multiple antennas. The determined parameters are jointly encoded to a first set of parameter combination using a number of signaling bits. The eNB transmits the signaling bits for the first antenna to the UE without transmits additional signaling bits for other antennas. The UE receives the signaling bits for SRS resource allocation for the first antenna and derives a second set of parameter combination for a second antenna based on a predetermined rule. By implicitly signaling SRS resource allocation for multiple antennas, it is easy for the eNB to allocate SRS resource for different antennas of different UEs with reduced overhead.
摘要:
A method includes: determining a first set of radio resources by decoding a dynamic indicator channel, wherein the dynamic indicator channel indicates a location of the first set of radio resources detecting a physical control channel in the determined first set of radio resources; and obtaining scheduling information of a data channel that carries a message from the decoded physical control channel.
摘要:
An efficient uplink HARQ feedback channel resource allocation scheme is adopted for carrier aggregation in a multi-carrier LTE/LTE-A system. Two resource allocation schemes (e.g., explicit and hybrid) for HARQ ACK/NACK (A/N) are applied. Part of the resources is allocated based on explicit method via RRC configuration. Another part of the resources is allocated based on hybrid method via both RRC and implicit information carried by downlink schedulers. In an explicit method, the physical resource for A/N feedback information is determined based on a resource index in a DL scheduling grant. The DL grant corresponds to transport blocks over a configured CC. The resource index points to a physical resource from a set of candidate uplink A/N physical resources reserved for the CC. In an implicit method, the A/N physical resources are determined based on a logical address of the DL scheduling grant.
摘要:
A communications apparatus is provided. A receiving module receives a signal with a predetermined signal bandwidth. A low pass filter filters the signal to obtain a filtered signal. A filter bandwidth of the low pass filter is wide enough to pass the regular sub-carrier frequency components and at least half of the guard sub-carrier frequency components of the signal. An analog to digital converter samples the filtered signal with a sampling rate exceeding a standard sampling rate defined in accordance with the predetermined signal bandwidth of the signal to obtain a plurality of digital samples. A Fast Fourier Transform module performs a fast Fourier transform on a predetermined number of points of the digital samples to obtain a plurality of transformed samples. The predetermined number exceeds a standard number defined in accordance with the predetermined carrier bandwidth. A sub-carrier collector collects the data from the transformed samples.
摘要:
A first wireless device reports to a base station at least one of (a) a capability of the first wireless device for path selection or path combining and (b) a supported frequency range on the second time-frequency resource. The first wireless device receives, from the base station, first control information indicating whether the first wireless device should receive data on the first time-frequency resource from the base station, on the second time-frequency resource from the second device, or both the first and second time-frequency resources, wherein the data are transmitted from the base station on the first time-frequency resource. The first wireless device receives the data based on the first control information.
摘要:
A method for obtaining scheduling information of a data channel is disclosed. The method includes: receiving a set of radio resources for a set of candidate control channels, wherein a part of the set of candidate control channels constitute the enhanced common search space (ECSS) for an enhanced physical downlink control channel (EPDCCH); attempting to decode each candidate control channel to obtain a physical control channel; and obtaining scheduling information of the data channel from the decoded physical control channel.
摘要:
A method of data transmission over guard sub-carriers is provided in a multi-carrier OFDM system. Adjacent radio frequency (RF) carriers are used to carry radio signals transmitted through adjacent frequency channels. A plurality of guard sub-carriers between adjacent frequency channels are aligned and identified for data transmission in a pre-defined physical resource unit. The identified guard sub-carriers do not overlap with normal data sub-carriers of the radio signals transmitted through the adjacent frequency channels. At least one of the identified guard sub-carriers is reserved as NULL sub-carrier. A flexible multi-carrier transceiver architecture is also provided in a multi-carrier OFDM system. Different multi-carrier and/or MIMO/SISO data transmission schemes are implemented by adaptively reconfigure same hardware modules including common MAC layer module, physical layer entities, and RF entities. Furthermore, the flexible multi-carrier transceiver architecture can be used to support data transmission over guard sub-carriers.
摘要:
A communications apparatus is provided. A receiving module receives a signal with a predetermined signal bandwidth. A low pass filter filters the signal to obtain a filtered signal. A filter bandwidth of the low pass filter is wide enough to pass the regular sub-carrier frequency components and at least half of the guard sub-carrier frequency components of the signal. An analog to digital converter samples the filtered signal with a sampling rate exceeding a standard sampling rate defined in accordance with the predetermined signal bandwidth of the signal to obtain a plurality of digital samples. A Fast Fourier Transform module performs a fast Fourier transform on a predetermined number of points of the digital samples to obtain a plurality of transformed samples. The predetermined number exceeds a standard number defined in accordance with the predetermined carrier bandwidth. A sub-carrier collector collects the data from the transformed samples.
摘要:
A hierarchical downlink (DL) synchronization channel (SCH) is provided for wireless OFDM/OFDMA systems. The SCH includes a Primary SCH (P-SCH) for carrying PA-Preambles used for coarse timing and frequency synchronization, and a Secondary SCH (S-SCH) for carrying SA-Preambles used for cell ID detection. The total time length occupied by P-SCH and S-SCH is equal to one OFDM symbol time length of a data channel, and S-SCH is located in front of P-SCH in each DL frame. A perfect multi-period time-domain structure is created and maintained in P-SCH to increase preciseness of frame boundary estimation. With overlapping deployment of macrocells and femtocells, a predefined SCH configuration scheme is provided to separate frequency subbands used for macrocells and femtocells such that interferences in S-SCH can be mitigated. In addition, a self-organized SCH configuration scheme is provided to allow more flexibility for femtocells to avoid or introduce interference in S-SCH.
摘要:
In advanced wireless OFDMA communication systems, hierarchical synchronization is adopted to synchronize between a base station (BS) and a mobile station (MS). In a hierarchical synchronization architecture, primary advanced preamble (PA-Preamble) is used for coarse time domain synchronization while cell ID is detected using several accumulated secondary advanced preambles (SA-Preambles). Network entry latency can be reduced by adjusting the relative location of superframe header (SFH), PA-Preamble and SA-Preambles within a superframe. Three different synchronization channel (SCH) architectures are proposed to provide different tradeoffs between network entry latency and the robustness of SA-Preamble design and cell ID detection.