Abstract:
A system for automatic management of an e-service which partitions an e-service life-cycle among operational functionalities and non-operational functionalities and tends to the operational functionalities, thereby reducing the development burden of an e-service and enabling e-service owners to stay more focused on business related issues. In addition, a system according to the present teachings facilitates the smooth transition among the phases of an e-service life-cycle and facilitates the partition of system functionality into physically distributed components.
Abstract:
A method of processing block-based image information including up sample filtering pixels located along boundaries of image blocks using a first filter strength and up sample filtering at least a portion of the pixels that are not located along boundaries of the image blocks using a second filter strength. The method may alternatively include up sample filtering pixels located along boundaries of image blocks and image sub-blocks using the first filter strength. An up sample filter system which includes a first up sample filter which filters pixels located along boundaries of the image blocks using a first filter strength and a second up sample filter which filters pixels that are not located along boundaries of the image blocks using a second filter strength.
Abstract:
Forming image information of image units (e.g. pixels) of a higher resolution by convoluting information of image units of a lower resolution with coefficients of a multiphase filter. The information of one set of higher resolution image units is formed by convoluting in a first direction the information of the lower resolution image units with a first set of four coefficients. The information of a second set of higher resolution image units is form by convoluting in the first direction the information of the lower resolution image units with a second set of four coefficients. Convolution may also be performed in a second direction with a set of four coefficients. In one example, the image information formed includes intensity information for each image unit.
Abstract:
A method for reducing or eliminating coding artifacts in video pictures processed using intra block prediction methods, for example, according to the H.264 standard. The causes of the coding artifacts are identified to be the intra prediction modes with prediction directions that are not in the direction of the raster scan. Filtering the affected blocks with a simple one-dimensional spatial filter will reduce or even eliminate these coding artifacts.
Abstract:
An optical input apparatus includes a light source of a directional light beam and a receiving module. The receiving module contains a collection of photodetectors through which information can be input into a system by pointing the light beam at various photodetectors. The photodetectors can be so arranged that all the functionalities of the standard computer keyboard and mouse can be performed by this apparatus. Such an input interface reduces greatly the factors that may cause repetitive strain injuries and can be used by people having difficulties operating a keyboard and mouse. The most preferred embodiments are for computer mouse and keyboard. Other hand operating devices, such as Personal Digital Assistants and remote controls can all make use of the advantages offered by this apparatus.
Abstract:
A method and image processing system are disclosed that extract facial feature information from an image using biometrics information of a face. Regions of interests such as a face, eyes, nose and mouth are defined in the image. A combination of disparity mapping, edge detection and filtering are then used to extract coordinates/positions of the facial features in the regions of interest.
Abstract:
A method of scaling complexity of a video processing system including determining a power saving factor based on an operating parameter and adjusting processing of video information based on the power saving factor to reduce computation complexity. The operating parameter may include available power and/or available processing capacity. A method of complexity scalability for a video processing system using prioritized layered coding including determining a power saving factor based on one or more metrics, such as power capacity and/or available processing capacity, and reducing processing complexity of multiple prioritized coding functions in a predetermined order of priority based on the level of the power saving factor. A video processing system including a power management circuit which determines the power saving factor and a video encoder system which correspondingly adjusts computation complexity.
Abstract:
A touchless input device has image sensors on the side of a surface to capture the positions and movement of fingers or any visible objects working near or on the surface. Embodiments include touchless data entry keyboards, touchless pointing devices, and touchless screens. It provides better performance, finer resolution, and more clearly defined action space than infrared beam based touchless input devices. In particular, one embodiment merges the space for data entry and the space for cursor movement into one and reduces the number of devices and working space needed by users.
Abstract:
Embodiments are disclosed for a system and method for parallel processing of video signals. A multi-core processor is used to establish a master-slave relationship between a first processing core and a plurality of individual processing cores. Shared memory is used to store data and control messages. A plurality of individual private memories are associated with each of the individual processing cores; and control logic is used to establish a master-slave protocol for using the plurality of individual cores to process video data. The master processing core is operable to balance the video data processing load among the individual slave processing cores.
Abstract:
A portable electronic device includes a base, an antenna radiator, an outer layer, and at least one conductive contact. The antenna radiator is formed on the activated base by plating. The antenna radiator is sandwiched between the base and the outer layer. One end of each conductive contact is electrically connected to the antenna radiator, and the other end of the each conductive contact is exposed.