摘要:
An inkjet head is disclosed. In the inkjet head a vibrating plate is formed on a liquid chamber substrate on which multiple dedicated liquid chambers are aligned; a first insulating film and a second insulating film are formed between a dedicated electrode wiring and a lower electrode in an area in which the dedicated electrode wiring and the lower electrode overlap; a third insulating film and a fourth insulating film are stacked in an area which includes a forming area of the dedicated electrode wiring; in at least a portion of a forming area of the dedicated liquid chamber, there is provided a non-film forming area; and, in an area including a piezoelectric element forming section, either the first insulating film and the fourth insulating film are formed in the non-film forming area, or the fourth insulating film is formed in the non-film forming area.
摘要:
A disclosed inkjet head includes a liquid chamber formed by a space between a vibrating plate and a nozzle substrate and separated by partitions; a piezoelectric element formed by sequentially laminating a common electrode, a piezoelectric substance and an individual electrode over the space; first to fourth insulating films respectively having first to fourth openings; and a first wiring connected to the individual electrode and pulled through the first and second openings over the common electrode, wherein the first wiring passes through the third opening over the third insulating film, the first wiring is exposed from the fourth opening so as to be externally connected, and the third insulating film and the fourth insulating film are not partly formed above the liquid chamber and formed above the first wiring.
摘要:
A fluid discharge head includes a fluid chamber filled with ink; a discharge opening configured to discharge a droplet of ink from the fluid chamber; a plurality of piezoelectric elements configured as displacement generating units to provide kinetic energy to the ink for the discharge of the ink droplet; and a vibrating plate forming a part of the fluid chamber and connected to the piezoelectric elements, the vibrating plate being configured to transmit a displacement generated by the piezoelectric elements to the ink in the fluid chamber. The vibrating plate includes vibrating portions for the respective the piezoelectric elements. The vibrating portions are configured to be independently displaced for the corresponding piezoelectric elements, and at least one of the piezoelectric elements is configured as a pressure detecting unit to detect an ink pressure in the fluid chamber.
摘要:
A manufacturing method of a thin film apparatus, includes: a first step for forming a separation layer on a heat resistant substrate; a second step for forming a thin film device on the separation layer; a third step for providing a surface layer on the thin film device; and a fourth step for generating a peeling phenomenon at the interface of the separation layer and the heat resistant substrate so as to peel the heat resistant substrate from a side of the thin film device.
摘要:
A wiring pattern is disclosed including: a variable wettability layer including a material whose critical surface tension changes in response to energy provided thereto, the wettability changing layer including a high surface energy part exhibiting a high critical surface tension and a low surface energy part exhibiting low critical surface tension; and a conductive pattern layer formed on the variable wettability layer at the high surface energy part. The conductive pattern layer has an elongated shape with a chamfered corner part in a plan view.
摘要:
An aryl amine polymer is provided which contains a specific repeat unit, its use in preparing an organic semiconductor material which contains the aryl amine polymer and an additional specific compound and in the preparation of organic light emitting devices (OLED), organic thin film transistors (TFT) and so on, along with an organic TFT including a substrate, an organic semiconductor layer which contains the organic semiconductor material and is located overlying the substrate, an electrode pair of a source electrode and a drain electrode; and a third electrode.
摘要:
A method of manufacturing an organic transistor active substrate is disclosed. The organic transistor active substrate includes an organic transistor in which a first electrode is formed on a substrate, a first insulating film is formed on the first electrode, a pair of second electrodes is formed on the first insulating film, and an active layer made of an organic semiconductor material is formed on the pair of second electrodes. The organic transistor is laminated with a second insulating film, and the second insulating film is laminated with a third electrode which is electrically coupled to one of the second electrodes via a through-hole provided through the second insulating film. The first electrode is formed by inkjet ejection; the first insulating film is formed by coating; the pair of second electrodes is formed by inkjet ejection; the active layer is formed by inkjet ejection; the second insulating film is formed by screen printing; and the third electrode is formed by screen printing.
摘要:
An arylamine polymer containing a repeating unit represented by the following chemical structure (I): In the chemical structure, Ar1, Ar3, and Ar4 independently represent a substituted or non-substituted divalent aromatic hydrocarbon group, Ar2 represents a substituted or non-substituted univalent aromatic hydrocarbon group, R1 and R2 independently represent a hydrogen atom, a substituted or non-substituted alkyl group, a substituted or non-substituted alkoxy group or a substituted or non-substituted alkylthio group, x and y independently represent an integer of from 0 to 2, and n represents 0 or 1.
摘要:
An organic transistor is capable of emitting light at high luminescence efficiency, operating at high speed, handling large electric power, and can be manufactured at low cost. The organic transistor includes an organic semiconductor layer between a source electrode and a drain electrode, and gate electrodes shaped like a comb or a mesh, which are provided at intervals approximately in the central part of the organic semiconductor layer approximately parallel to the source electrode and the drain electrode. The organic semiconductor layer consists of an electric field luminescent organic semiconductor material such as compounds of naphthalene, anthracene, tetracene, pentacene, hexacene, a phthalocyanine system compound, an azo system compound, a perylene system compound, a triphenylmethane compound, a stilbene compound, poly N-vinyl carbazole, and poly vinyl pyrene.
摘要:
An organic transistor is capable of emitting light at high luminescence efficiency, operating at high speed, handling large electric power, and can be manufactured at low cost. The organic transistor includes an organic semiconductor layer between a source electrode and a drain electrode, and gate electrodes shaped like a comb or a mesh, which are provided at intervals approximately in the central part of the organic semiconductor layer approximately parallel to the source electrode and the drain electrode. The organic semiconductor layer consists of an electric field luminescent organic semiconductor material such as compounds of naphthalene, anthracene, tetracene, pentacene, hexacene, a phthalocyanine system compound, an azo system compound, a perylene system compound, a triphenylmethane compound, a stilbene compound, poly N-vinyl carbazole, and poly vinyl pyrene.