Abstract:
A reflective color display pixel has a top surface for receiving ambient light, and a plurality of sub-pixels including a first sub-pixel. The first sub-pixel has a broadband mirror and a luminescent layer disposed over the broadband mirror. The luminescent layer contains a luminescent material for absorbing a portion of the ambient light and emitting light of a first color, and a light-absorbing material for absorbing light of wavelengths longer than a wavelength of the first color.
Abstract:
A compound is disclosed. The compound has the general structure: wherein Y is selected from the group consisting of hydrocarbons, hydrocarbons including nitrogen in the carbon backbone, and hydrocarbons including oxygen in the carbon backbone; wherein R1 and R2 are each independently selected from the group consisting of hydrogen, linear hydrocarbons, branched hydrocarbons, and cyclic hydrocarbons and wherein R1 and R2 are not both hydrogen; wherein X is selected from the group consisting of CH2, O, N—R3, S, and nothing and wherein R3 is selected from the group consisting of hydrogen, branched hydrocarbons, linear hydrocarbons, and cyclic hydrocarbons; wherein m is an integer between 1 and 50, inclusive; wherein n is an integer between 1 and 10,000, inclusive; and wherein p, q, and z are each independently an integer greater than 0.
Abstract:
Pigment-based inks are provided. The inks include a non-polar carrier fluid and pigment particles suspended in the non-polar carrier fluid. The pigment particles have tri-block copolymer grafts. Each tri-block copolymer graft comprises a tri-block copolymer having three portions: an inner block attached to the pigment particle, a middle block, and an outer block, wherein the inner and outer blocks each contain bulky organic groups to help facilitate solubility of the functionalized polymers in the non-polar solvent and to provide steric stabilization of the resulting particle dispersion in the non-polar solvent, and wherein the middle block contains either acidic or basic functionalized side groups that facilitate charging of the pigment particle. A combination of an electronic display and an electronic ink employing the pigment and a process for making the pigment-based inks are also provided.
Abstract:
Copolymers for luminescent enhancement in reflective display applications comprise a functionalized fluorene moiety, including a functional group selected from water-soluble functional groups and/or alcohol-soluble functional groups, and a heterocyclic ring moiety selected from the group consisting of substituted carbazole derivatives, substituted benzothiadiazole derivatives, and substituted phenothiazine derivatives, wherein the respective substituted derivatives include a functional group selected from water-soluble functional groups and/or alcohol-soluble functional groups. Composite materials comprising the copolymers and photoluminescent dyes are also provided, as is a luminescence-based sub-pixel (100).
Abstract:
A pigment-based ink includes a non-polar carrier fluid and pigment particles suspended in the non-polar carrier fluid. The pigment particles have surface functionalized anionic groups. A combination of an electronic display and an electronic ink is provided, as is a method for modifying the pigment particles.
Abstract:
Pigment based inks are provided. The inks include a non-polar carrier fluid; and a surface-functionalized pigment particle including a nitrogen-inked moiety to the surface of the pigment particle through a nitrogen link at one end of the nitrogen-linked moiety and a block copolymer having at least two blocks attached at another end, the pigment particle suspended in the non-polar carrier fluid. A combination of an electronic display and an electronic ink employing the pigment and a process for making the pigment-based inks are also provided.
Abstract:
A pigment-based ink is disclosed. The ink includes a non-polar carrier fluid and a nitrogen-linked surface functionalized pigment particle, wherein the nitrogen-linked surface functionalized pigment particle is suspended in the non-polar carrier fluid and includes an azide moiety linked to the surface of a pigment particle. The azide moiety further includes an acidic or a basic functional group bonded to it. An electronic display utilizing the pigment-based ink and a method of formulating the pigment-based ink are also disclosed.
Abstract:
An emissive semi-interpenetrating polymer network (E-semi-IPN) includes a semi-interpenetrating polymer network and an emissive material interlaced in the polymer network. The semi-interpenetrating polymer network includes in a crosslinked state one or more of a polymerized organic monomer and a polymerized organic oligomer, polymerized water soluble polymerizable agent, and one or more polymerized polyfunctional cross-linking agents. The E-semi-IPN may be employed as an E-semi-IPN layer (16, 36, 56) in organic light emitting devices (10, 20, 30, 40).
Abstract:
A polymer-nanoparticle composition of formula II includes a polymer of formula I. The polymer has two portions. One portion of the polymer includes a binding group that binds to a nanoparticle. The other portion of the polymer includes a hydrophobic moiety.
Abstract:
Copolymers and methods using the copolymers control the stability, the homogeneity of mixtures and the chargeability of a nanoparticle. A block copolymer-nanoparticle composition includes first, second and third block units that each include repeating units of respective monomers. The monomer of the first block unit includes a binding group that binds to the nanoparticle. The monomer of the second block unit includes a hydrophobic moiety that provides steric stabilization of the nanoparticle and homogeneity of mixtures of the copolymer-nanoparticle composition in a non-polar medium. The monomer of the third block unit includes a chargeable group that imparts a charge to the nanoparticle. An order of the respective block units in the copolymer and the number of repeating units of the monomer in the respective block units control the stability, the homogeneity of mixtures and the charge of the nanoparticle.