摘要:
A mold-tool assembly (100), comprising: a manifold assembly (102); and a constant-temperature heater assembly (99) being positioned relative to the manifold assembly (102), the constant-temperature heater assembly (99) being configured to convey, in use, a thermal-management fluid (109).
摘要:
A molding system (100), comprising: a collection (102) of material preparation and delivery systems (102A, 102B, 102C, 102D); and a material-mixing assembly (104) being in fluid communication with the collection (102) of material preparation and delivery systems (102A, 102B, 102C, 102D), the material-mixing assembly (104) being configured for fluid communication with a material-receiving assembly (106).
摘要:
There is provided a method (300) of controlling melt pressure at a filter outlet (113) of a melt filter (112) in an injection unit (100) having an extruder (102) that is connectable to a melt accumulator (122) via the melt filter (112), the melt filter (112) being associated with a target melt pressure range, the method executable at a controller (126) associated with the injection unit (100), the method (300) comprising: appreciating (310) an indication of an actual melt pressure associated with the melt filter (112); responsive to the actual melt pressure not being within the target melt pressure range, determining (320) a remedial parameter that is instrumental in bringing the actual melt pressure within the target melt pressure range; releasing (330) a control signal to execute an action associated with the remedial parameter, thereby causing the actual melt pressure to fall within the target melt pressure range.
摘要:
A mold-tool system (100), comprising: (i) a hot runner manifold assembly (102), (ii) a plate assembly (104) defining an air-cavity circuit (106), the plate assembly (104) being configured to support and surround, at least in part, the hot runner manifold assembly (102), and the air-cavity circuit (106) surrounding, at least in part, the hot runner manifold assembly (102); and (iii) means for forcing, in use, a relatively cooler air stream to the air-cavity circuit (106), wherein that the air-cavity circuit (106) is configured to: (i) increase, in use, thermal losses of the hot runner manifold assembly (102), and (ii) reduce time to cool down the hot runner manifold assembly (102) relative to heat lost as a result of natural convection associated with the hot runner manifold assembly (102).
摘要:
A nozzle-locating insulator (300), comprising: a body assembly (302), having: a spring-facing surface (304) including: spring-contact sections (306); and spring-noncontact sections (308) interposed between the spring-contact sections (306).
摘要:
A hot-runner system for use with an injection molding system, the hot-runner system including a hot-runner component, a material; and carbon nanotubes being combined with the material. The carbon nanotubes are dispersed, at least in part, in the material and the material includes a metal alloy. The carbon nanotubes are dispersed in the metal alloy, so that the metal alloy and the carbon nanotubes are combined to form a CNT-metal composite material.
摘要:
A mold-tool system (100) configured to accommodate a valve stem (104), the mold-tool system (100) comprising: a nozzle assembly (402) having: a nozzle-output end (408) being configured to support, at least in part, slide movement of the valve stem (104).
摘要:
Disclosed is a side gate nozzle assembly (108) having a nozzle body (210) and at least one side gate nozzle tip assembly (112) wherein the nozzle body (210) and the at least one side gate nozzle tip assembly (112) are slidably engaged to each other.
摘要:
Disclosed herein is, amongst other things, a molding apparatus, comprising a stripper sleeve (116) for use in a first stack portion (110) of a mold stack (140), wherein the stripper sleeve (116) is configured to open a slide pair (122) of the first stack portion (110) and to strip a molded article (106) from the first stack portion (110).