Abstract:
In etching a metal line formed as a dual layer of aluminum alloy and molybdenum, the metal line consisting of the dual layer of aluminum alloy and molybdenum is etched through one-time wet etching by applying the etchant including HNO3, HClO4, a Ferric compound (Fe3+), and a Flouro compound (F−), the process can be reduced and a metal line having a good profile can be formed.
Abstract:
The liquid crystal display device includes a histogram analyzer analyzing a histogram of an input image and determining the input image as being in one of a low brightness mode, a normal mode, and a high brightness mode based on the histogram analysis, a back light controller controlling a maximum brightness of a back light unit based on the mode determination, and a data modulator enlarging the histogram of the input image to modulate data of the input image. The histogram analyzer detects a most frequent value of gray scale occurring most frequently in the input image of one frame, compares the most frequent value with a predetermined low reference gray value and a predetermined high reference gray value, and determines the input image as in one of the low brightness mode, the normal mode, and the high brightness mode based on the compared result.
Abstract:
A lenticular lens type three-dimensional image display device comprises a display panel; a first polarizer on an upper surface of the display panel; a glue layer uniformly formed on an entire surface of the first polarizer; and a lenticular lens sheet on the glue layer, wherein the glue layer has an adhesive property when exposed to an ultraviolet light.
Abstract:
A liquid crystal display device and methodology of fabricating the same includes a picture display part provided on a substrate; a tape carrier package mounted with an integrated circuit to drive the picture display part, the tape carrier package having first pads attached to the substrate; signal lines provided on the substrate to apply signals to the tape carrier package; and second pads having a larger width than the first pads, the second pads being provided on the substrate in such a manner to be connected to the signal lines, and the second pads being connected to the first pads.
Abstract:
A liquid crystal display module includes: a liquid crystal display panel, a surface light-emitting lamp irradiating light to the liquid crystal display panel by a surface light-emission, and a power source supplying an electric power to the surface light-emitting lamp. The surface light-emitting lamp includes a frame having a light-emitting space, a first barrier rib formed partitioning the lamp into light-emitting spaces, electrode pairs, and a second barrier rib defining a light-emitting path for each of the partitioned light-emitting spaces.
Abstract:
A liquid crystal display includes a plurality of gate lines (GØ-Gn), a plurality of data lines (D1-Dn) formed in a direction crossing the gate lines, a plurality of pixel electrodes formed in a pixel area defined by the gate lines and the data lines, the pixel electrodes indicating pictures by a control of the corresponding gate lines, and a light volume adjusting layer formed on a lower layer of the pixel electrodes controlled by a second one of the gate lines (G1). A method for manufacturing a liquid crystal display includes the steps of: forming gate lines and a gate electrode on a substrate, forming a gate insulating film on the board including the gate electrode, forming a first active layer on the gate insulating film corresponding to an upper portion of the gate electrode and forming a second active layer on the gate insulating film corresponding to a portion where pixel electrodes are formed, forming source/drain electrodes on an upper portion of the first active layer, and forming a passivation film on the whole surface of the active layer including the source/drain electrodes.
Abstract:
There is disclosed a liquid crystal display panel and the fabricating method thereof that is adaptive for preventing the deterioration of display quality in a high temperature environment. A liquid crystal display panel according to an embodiment of the present invention includes a lower array substrate and an upper array substrate which face each other with a liquid crystal therebetween; and an alignment film formed in each of the upper array substrate and the lower array substrate for aligning the liquid crystal, wherein the alignment film is formed of polymers where an optically active radical as a functional group is combined into any one of a polybenzoxazole group compound, a polybenzthiazole group compound or a polybenzimidazole group compound.
Abstract:
A flexible printed circuit film that is capable of preventing a bonded pad from being separated or opened because of a force applied to a bonded part when the flexible printed circuit film is engaged to a printed circuit board. In the film, a first pad is provided at one end of a body to be adhesively connected to a second pad of a first printed circuit board. A third pad is provided at other end of the body to be engaged to a connecter of a second printed circuit board. At least one recess is defined in the body of the flexible printed circuit film. Accordingly, it becomes possible to prevent a contact portion between other pad of the FPC film and the pad of the data circuit board from being separated or opened due to a force applied upon engagement of one pad of the FPC film to the connecter of the timing control board.
Abstract:
A method of fabricating an in-plane switching mode liquid crystal display device includes: forming array elements on a first substrate, the array elements including field-generating electrodes having a curved shape; rubbing one of the first substrate and a second substrate in one direction, which can be any direction; and forming a liquid crystal layer between the first substrate and a second substrate such that at least a portion of the liquid crystal is oriented in the one direction.
Abstract:
An apparatus of driving the liquid crystal display of the present invention includes a picture quality improving unit that receives input data for a frame, wherein the picture quality improving unit analyzes green input data to determine a brightness of the frame and performs a gamma compensation on the input data in accordance with the brightness of the frame to generate output data; and a timing controller that rearranges the output data to supply the rearranged output data to the data driver.