Abstract:
Antenna designs are disclosed that exhibit both high bandwidth and efficiency. A first aspect of the invention concerns the form factor of the antenna; a second aspect of the invention concerns the ease with which the antenna is manufactured; and a third aspect concerns the superior performance exhibits by the antenna across a large bandwidth.
Abstract:
A telecommunication network device for implementing the DOCSIS standard during a transition from a coaxial cable network to a fiber-optic network is described. The device includes a memory including installed firmware for implementing a telecommunication gateway function in accordance with the DOCSIS telecommunication standard and a processor configured to update the installed firmware by downloading the update from a first TFTP server over a coaxial cable network, wherein the processor is further configured to update the installed firmware by downloading the update from a second TFTP server over a fiber-optic network.
Abstract:
Systems and methods are disclosed which provide wireless communication systems implementing subsystems adapted for flexible deployment configurations and to resist the introduction of interference. Preferred embodiments of the present invention provide a wireless communication system configuration in which an ODU subsystem is coupled to an IDU subsystem using a fiber optic link. According to a preferred embodiment of the present invention, an ODU subsystem is adapted to provide conversion between digital and analog to thereby facilitate the use of a digital link between the ODU subsystem and a corresponding IDU subsystem. Embodiments of the present invention utilize a plurality of ODU subsystems configured according to the present invention to provide wireless communication coverage of a service area, such as to provide a wireless application termination system (WATS) hub for use in providing wireless communication links with respect to a plurality of subscriber units.
Abstract:
Embodiments of the invention provide several antenna designs that exhibit both high bandwidth and efficiency, such as for operation in one or more bands, such as but not limited to operation in 3G, 4G, LTE bands. A first aspect of the invention concerns the form factor of the enhanced antenna; a second aspect of the invention concerns the ease with which the enhanced antenna is manufactured; and a third aspect concerns the superior performance exhibited by the enhanced antenna across one or more bandwidths.
Abstract:
Systems and methods are disclosed which provide wireless communication systems implementing subsystems adapted for flexible deployment configurations and to resist the introduction of interference. Preferred embodiments of the present invention provide a wireless communication system configuration in which an ODU subsystem is coupled to an IDU subsystem using a fiber optic link. According to a preferred embodiment of the present invention, an ODU subsystem is adapted to provide conversion between digital and analog to thereby facilitate the use of a digital link between the ODU subsystem and a corresponding IDU subsystem. Embodiments of the present invention utilize a plurality of ODU subsystems configured according to the present invention to provide wireless communication coverage of a service area, such as to provide a wireless application termination system (WATS) hub for use in providing wireless communication links with respect to a plurality of subscriber units.
Abstract:
An antenna system for a wireless device and a method for operating same are provided for controlling radiation characteristics of the antenna system. The antenna system includes first and second sets of feed points disposed so that first and second radiation pattern are generated by the antenna system when drive currents are provided at the first and second set of feed points, respectively. The second radiation pattern is different from the first radiation pattern. The first and second drive currents are supplied such that a predetermined overall radiation pattern is generated. The predetermined overall radiation pattern is at least in part a combination of the first radiation pattern and the second radiation pattern. The system and method may be directed toward SAR mitigation.
Abstract:
Tunneling is a mechanism used to aggregate payloads from a network protocol at or below the tunneling layer into a single packet. A user-space application establishes a Transmission Control Protocol (TCP) tunnel and encapsulates an end-to-end TCP payload into a TCP segment for transmission over a TCP connection. This enhanced TCP tunnel eliminates TCP meltdown and can be used over any network which supports TCP. The calling application either identifies the parameters of an existing TCP socket or establishes a new TCP socket. A modified transport layer uses the identified TCP connection in forming the enhanced TCP tunnel. The enhanced TCP tunnel manages the data transmission on the TCP stack to eliminate TCP meltdown.
Abstract:
A network device and method for improving performance monitoring capabilities using wide view angle indicators are disclosed. A network device, in one embodiment, includes a first plate, a second plate, and a light source. The first plate has multiple performance indicators situated at a side of the network device. The second plate has multiple performance indicators wherein the second plate is situated at a surface having a predefined angle with respect to the first plate. The light source, which includes at least one light emitting diode (“LED”) and optical element(s), is capable of generating two illuminating beams. The first illuminating beam illuminates a portion of device performance viewable from the first plate and the second illuminating beam illuminates a first portion of device performance viewable from the second plate.
Abstract:
A portable computing device for configuring wireless network settings based on received network configuration information includes an input device configured to receive wireless network information from a network device independent of whether the portable computing device is connected to a wireless network that is implemented by the network device and a network configuration application for configuring one or more wireless network settings to initiate wireless network communication through the network device based on the received network information. The network configuration application is configured to facilitate communication of the received wireless network information to a client device. The network information may include a security key and may be entered into a client device either manually after being displayed on the portable computing device or by being transmitted to client device.
Abstract:
The present invention provides a method and apparatus for adaptively scanning communication channels to find a channel having a desired attribute such as being usable for communication with a home network in one of a plurality of communication modes. A first scan of a first set of channels is performed, and attributes are assigned to channels. If a channel having the desired attribute is not found, the attributes are used to configure a second scan of a second set of channels using a second scan mode, such that the expected amount of resources consumed in the second scan is reduced, for example by scanning channels more likely to be usable for communication first. The second scan of a second set of channels is performed, and additional attributes are assigned to channels. If a channel having the desired attribute is found during the first or second scan, the scan may terminate.