Abstract:
A surface functional electro-textile fabric incorporates energy-active, electrically conductive or optically conductive fibers and nonconductive fibers in a woven or knitted textile fabric. The weave or knit pattern is selected so as to form floats of the electrically conductive fibers on at least one surface of the electro-textile fabric. The electro-textile fabric can be incorporated into an antenna structure that interacts with high frequency electromagnetic radiation, particularly in the frequency range of DC to 100 GHz.
Abstract:
The invention provides a functional stretch laminate composite puckered fabric which is robust, laundry-durable and adaptable for securing about any three dimensional body, and a method for forming such puckered fabric. The functional stretch laminate fabric is provided with at least one functional element which can conduct electricity, conduct light, provide electromagnetic fields or provide shielding from electromagnetic fields. In addition, at least one via is provided in the functional stretch laminate allowing the functional element to extend or loop outwardly from the at least one via when the laminate is in a relaxed or unstretched state. Generally, the functional stretch laminate fabric is sufficiently robust for incorporation into garments and for applications in so-called wearable electronics.
Abstract:
A garment and system includes a monitoring fabric that exhibits a light reflection property and substantially no light transmission property when the fabric is illuminated with light having wavelength(s) in the range of 400 to 2200 nanometers. The amount of useful light reflected by the fabric into an aperture of acceptance defined with respect to an imaginary axis extending from the fabric relative to the amount of light lost to the aperture of acceptance detectably changes when the fabric stretches in response to motion, as the motion induced by physiological activity (e.g., heart rate). The system includes at least one radiation source and at least one radiation detector, with the detector disposed in the aperture of acceptance. The source and detector may be attached to the fabric in relative positions such that the reception of incident radiation by the detector is directly affected by a change in the amount of useful light reflected by the fabric into the aperture of acceptance as the fabric stretches in response to motion.
Abstract:
An elastic composite yarn comprises a composite core and a composite covering. The composite core comprises an elastic core member and an inelastic functional core member. The composite covering comprises at least an elastic covering member and at least one inelastic covering member surrounding the elastic covering member, such that substantially all of an elongating stress imposed on the composite yarn is carried by the elastic core member and the elastic covering member.
Abstract:
Energy active composite yarns include at least one textile fiber member of either an elastic or inelastic material, and at least one functional substantially planar filament, which surrounds or covers the textile fiber member. The composite yarns can include an optional stress-bearing member, which also surrounds or covers the textile fiber member. The composite yarns may be multifunctional, meaning the functional substantially planar filament can exhibit combinations of electrical, optical, magnetic, mechanical, chemical, semiconductive, and/or thermal energy properties.
Abstract:
A system and method for monitoring blood pressure of a wearer has an inflatable arm cuff that is selectably inflatable to differing air pressures that incorporates a fabric having both a light transmission property and a light reflection property when the fabric is illuminated with light having wavelength(s) in the range from about 400 to about 2200 nanometers. A radiation source and a detector are attached to the fabric in relative positions such that the reception of incident radiation by the detector is directly affected by a change in the amount of light transmitted through the fabric relative to the amount of light reflected by the fabric as the fabric stretches in response to motion in the body of a wearer due to changes in the flow of blood through an artery disposed beneath the fabric occurring in consonance with variations in the air pressure within the inflatable cuff.
Abstract:
An elastic composite yarn comprises a composite core and a composite covering. The composite core comprises an elastic core member and an inelastic functional core member. The composite covering comprises at least an elastic covering member and at least one inelastic covering member surrounding the elastic covering member, such that substantially all of an elongating stress imposed on the composite yarn is carried by the elastic core member and the elastic covering member.
Abstract:
Energy active composite yarns include at least one textile fiber member of either an elastic or inelastic material, and at least one functional substantially planar filament, which surrounds or covers the textile fiber member. The composite yarns can include an optional stress-bearing member, which also surrounds or covers the textile fiber member. The composite yarns may be multifunctional, meaning the functional substantially planar filament can exhibit combinations of electrical, optical, magnetic, mechanical, chemical, semiconductive, and/or thermal energy properties.
Abstract:
A system and method for monitoring blood pressure of a wearer has an inflatable arm cuff that is selectably inflatable to differing air pressures that incorporates a fabric having both a light transmission property and a light reflection property when the fabric is illuminated with light having wavelength(s) in the range from about 400 to about 2200 nanometers. A radiation source and a detector are attached to the fabric in relative positions such that the reception of incident radiation by the detector is directly affected by a change in the amount of light transmitted through the fabric relative to the amount of light reflected by the fabric as the fabric stretches in response to motion in the wearer's body due to changes in the flow of blood through an artery disposed beneath the fabric occurring in consonance with variations in the air pressure within the inflatable cuff.
Abstract:
The invention provides a laminate construction for heating or warming with one or more electrically conductive patterns of conductive ink or paste formed on a first confronting surface of an insulating sheet, where each pattern is connected by one or more conductive elements (bus wires), and where each pattern and the conductive elements are between the confronting surfaces of insulating sheets. The laminate may include one or more stretch and recovery elements to cause the laminate to be more adaptable for securing about any three dimensional body. The laminate with heating elements therein may be incorporated into garments or other wearables or into warming textile structures (pads and blankets).