Abstract:
Monitor scans are performed before imaging scans with respect to a patient injected with a contrast agent. Magnetic resonance images of a plurality of slices of the patient are acquired, usually continuously, in the monitor scans. Projection images are generated from the magnetic resonance images for the plurality of slices, and these projection images are dynamically displayed images. The operator observes the monitor image and issues an instruction for imaging scans. Since a projection image is displayed as the monitor image, then even if a blood vessel is distributed over a three-dimensional area, the operator is still able to ascertain accurately the timing at which the contrast agent reaches the diagnostic region.
Abstract:
A medical wireless imaging device comprises an image sensor, a transmitter, a receiving device, and a plurality of light sources. The transmitter transmits data through a wireless communication link to a processing device. The receiving device wirelessly receives control data from a control unit. Each light source is configured to be individually controlled according to the control data. A reference image is stored for each light source. Intensities of each light source are calculated based on a reference image and on an input image.
Abstract:
Apparatus and method for monitoring a system in which a fluid flows and which is characterized by a change in the system with time in space. A preselected place in the system is monitored to collect data at two or more time points correlated to a system event. The data is indicative of a system parameter that varies with time as a function of at least two variables related to system wash-in and wash-out behavior. A calibration map is made on a calculated basis with each pixel or voxel representative of a color hue indicative of wash-out behavior and a color intensity indicative of wash-in behavior. The calibration map serves as a criteria for selecting the time points. Software and a data processing system are provided to develop a color coded output map. The calibration map, the color coded output map and image of the preselected place are also novel implementations.
Abstract:
A method for calculating quantitative perfusion measurements using an MRI system includes a pulse sequence that acquires perfusion weighted images and additionally measures T1 values before and after the administration of a contrast agent. T1 values are measured by rapidly sampling a longitudinal relaxation curve and employed to determine the blood volume in tissue. A correction factor for the effect of water diffusion between blood vessels and the extravascular space is determined.
Abstract:
The invention relates to a facility that can be used, in particular, to measure the flow conditions in a blood vessel. The facility comprises a catheter (16) having a bundle (15) of optical waveguides that connects control and measurement facilities (20) outside the body with an optical unit (10) at the catheter tip. The light (λK) generated by a cavitation light laser source (30) is beamed via the catheter (16) and the optical unit (10) into a focus region (2) in the vessel lumen, where it generates cavitation bubbles (3). The movement of the cavitation bubbles (3) with the blood flow is determined by the particle-measuring unit (20) that is based, for example, on phase-Doppler anemometry and/or the Doppler shift. As a result of suitable design of the optical unit (10), the focus region (2) can be displaced as desired radially and rotationally inside the vessel so that a vessel cross section can be scanned in a spatially resolved way. Furthermore, a spectral analysis of the light arriving from the focus region (2) is possible in order, for example, to analyze the chemical composition in this region. The reaching of the vessel wall (1) can be detected by the moving focus region (2) and used for a vessel measurement and/or to switch off the cavitation light laser (30).
Abstract:
A method for determining cardiac output in conjunction with flow through an extracorporeal circuit, wherein flow through an arterial line of the extracorporeal circuit is temporarily reversed and an indicator is passed through the cardiopulmonary circuit. A dilution curve is measured in the arterial line of the extracorporeal circuit during the reversed flow, and cardiac output is determined corresponding to the measured dilution curve.
Abstract:
A method and apparatus for determining an initial flow rate in a conduit is disclosed. A known change is made to the flow to be measured, resulting changes (or values corresponding to these changes), or relative changes in the flow to be measured are monitored and the initial flow in the conduit is calculated from the value of the known change and monitored changes. Devices to practice the method include catheters having one or two sensors and one or two sites for introducing the volume change.
Abstract:
An endoscope having restricted dimensions and comprising at least one image gatherer, at least one image distorter and at least one image sensor shaped to fit within said limited dimensions, and wherein said image distorter is operable to distort an image received from said image gatherer so that the image is sensible at said shaped image sensor.
Abstract:
The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.
Abstract:
Method for assessing the patency of a patient's blood vessel, advantageously during or after treatment of that vessel by an invasive procedure, comprising administering a fluorescent dye to the patient; obtaining at least one angiographic image of the vessel portion; and evaluating the at least one angiographic image to assess the patency of the vessel portion. Other related methods are contemplated, including methods for assessing perfusion in selected body tissue, methods for evaluating the potential of vessels for use in creation of AV fistulas, methods for determining the diameter of a vessel, and methods for locating a vessel located below the surface of a tissue.