Abstract:
The invention concerns a device and method for monitoring the integrity of filtering installations consisting of a filter housing (1) designed to perform integrity tests and for filtration, equipped with a plurality of filter elements (2, 3) and an electronic testing and monitoring unit (4) designed for monitoring and performing integrity tests, said filter elements (2, 3) having each a storage element and a communicating part (7) being connected to the monitoring and testing unit arranged in the filtering housing, whereon data of said electronic storage elements can be read. The invention also concerns a method for monitoring the integrity of filter installations by means of a plurality of filter elements (2, 3) in a filter housing (1) and of an electronic testing and monitoting unit designed to monitor and perform integrity tests, data stored by electronic storage elements (6) arranged on the filter elements (6) capable of being exchanged with the monitoring and testing unit, identification data and other data concerning the filter elements derived from the electronic storage elements (6) capable of being selected and of constituting the basis for integrity monitoring and testing.
Abstract:
A fuel-water separation filtration system for filtering fuel and for separating water out of the fuel includes a housing assembly, a filter element assembly, and a closing lid. The housing assembly includes a unitary molded housing, a plurality of flow connection fittings that are spin welded into the housing, and a standpipe that is spin welded to the housing. The filter element assembly includes a cover and an endplate and filter media with one end bonded to the cover and an opposite end bonded to the endplate. The standpipe includes an attachment portion that extends beyond the upper end of the filter element assembly and the closing lid is threadedly attached to the attachment portion for closing the housing assembly. The filtration system requires pressurization for proper operation and the filtration system cannot be pressurized without the filter element assembly being installed.
Abstract:
A housing configuration for a liquid filter in which the housing is cup-shaped and is produced by a molding technique. The housing lid or lid is secured to the housing (10) by a course of threads (28) which can be produced without forming any undercuts. This is achieved inside an area (30) around the mold parting plane (29) by providing recesses (31) on the course of threads in the horizontal areas. As a result, the thread can be produced directly on the housing by the initial molding technique without any post-molding processing measures, so that manufacturing costs are reduced.
Abstract:
The invention concerns a device and method for monitoring the integrity of filtering installations consisting of a filter housing (1) designed to perform integrity tests and for filtration, equipped with a plurality of filter elements (2, 3) and an electronic testing and monitoring unit (4) designed for monitoring and performing integrity tests, said filter elements (2, 3) having each a storage element and a communicating part (7) being connected to the monitoring and testing unit arranged in the filtering housing, whereon data of said electronic storage elements can be read. The invention also concerns a method for monitoring the integrity of filter installations by means of a plurality of filter elements (2, 3) in a filter housing (1) and of an electronic testing and monitoring unit designed to monitor and perform integrity tests, data stored by electronic storage elements (6) arranged on the filter elements (6) capable of being exchanged with the monitoring and testing unit, identification data and other data concerning the filter elements derived from the electronic storage elements (6) capable of being selected and of constituting the basis for integrity monitoring and testing.
Abstract:
The invention is directed to a fluid filter having a housing assembly defining a chamber through which fluid to be filtered can flow between an inlet and an outlet, a filtering assembly within the chamber through which fluid moving between the fluid inlet and fluid outlet passes, and a cover assembly. The housing assembly has an opening through which at least a part of the filtering assembly can be directed into an operative position within the chamber. The cover assembly seals the opening. The housing assembly has a housing body and a base plate connected to the housing body. The base plate is secured to the housing body through at least one weld and a plurality of mechanical fasteners.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Abstract:
The present invention comprises a unique starter assembly for a gas discharge lamp. The starter assembly comprises a main current path with a first leg connected to one electrode of a gas discharge lamp, and a second leg connected to a second electrode of the gas discharge lamp. A starting current path is provided between the first and second electrode, and comprises an magnetic switch. The magnetic switch is actuated by an electromagnet controlled by a control circuit. The control unit may be programmed with the start time required for a particular lamp design. In an alternative embodiment, the starter assembly further comprises a radio frequency identification system. The radio frequency identification system includes a gas discharge lamp transponder. The lamp transponder is used to communicate specific lamp information to the control circuit. The control circuit may then modify the start time for that lamp based on this information.
Abstract:
A lamp assembly configured to inductively receive power from a primary coil. The inductively powered lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, The inductively powered lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Abstract:
A fluid filter having a housing assembly defining a chamber through which fluid to be filtered can flow. The housing assembly has a fluid outlet and a fluid inlet. A filtering assembly is provided within the chamber through which fluid moving between the fluid inlet and fluid outlet passes. The housing assembly has an opening through which at least a part of the filtering assembly can be directed into an operative position within the chamber. The cover assembly selectively seals the opening and allows access to the filtering assembly therethrough. The cover assembly has a cover element and a cover locking assembly. The cover locking assembly has a locked state and a released state. The cover locking assembly draws the cover element against the housing assembly along a first line with the cover locking assembly in the locked state. The cover locking assembly has a securing knob that is drawn against the cover assembly to bear the cover assembly forcibly against the housing assembly with the cover locking assembly in the locked state. The securing knob has a first surface that wedges relative to a cooperating surface on the cover assembly with the cover locking assembly in the locked state.
Abstract:
The invention relates to a filter device with a filter housing (10) and a first filter element (12), arranged therein through which a medium may flow in a given direction and with a bypass device (22). Along with the first filter element (12), a further second filter element (32) is provided, said filter elements (32) are arranged in series, one behind the other, in the direction of flow and, on the bypass device (22) being activated, the further filter element (32), immediately following in the direction of flow, carries out a filtration of the medium. The further filter element thus takes over the main filtration of the medium on actuation and operation of the bypass device as the first filter element is essentially no longer available for a filtration process due to the bypass device.