Abstract:
The invention relates to a milling cutter head having a number of blade supports (11) which are inserted in recesses of a base body (10) and have blades (12), wherein each blade support can be axially displaced by means of a wedge (14) and be fixed in the milling cutter head by means of clamping elements. According to the invention, the blade supports each have a shank which is arranged in a receiving bore of the base body and can be fixed via a centrally (13) located clamping piece (18).
Abstract:
A combination tool and method for metal-cutting machining of a drill-hole and its hole surface as well as cutting insert for such a combination tool. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.
Abstract:
Methods of fly-cutting a workpiece are disclosed, and in methods in which the position of a fly-cutting head or its associated cutting element is known as a function of time. Also disclosed are methods of forming features, such as grooves or groove segments, in a workpiece such as a cylindrical roll. The features may be provided according to one or more disclosed patterns. Articles made using tools machined in the manner described are also provided, such as polymeric film or sheeting that exhibit certain beneficial properties.
Abstract:
A mechanical engraver (10) includes a rotating plate (11), a first cutting tool (12), and a second cutting tool (13). The rotating plate has a rotating axis. The first cutting tool is mounted on the rotating plate and includes a first knifepoint (1221). The second cutting tool is mounted on the rotating plate and includes a second knifepoint (1321). A distance between the first knifepoint and the rotating axis is longer than a distance between the second knifepoint and the rotating axis. A distance between the first knifepoint and a bottom of the rotating plate is shorter than a distance between the second knifepoint and the bottom of the rotating plate. The first cutting tool includes a straight first cutting edge (1222). The second cutting tool includes a second cutting edge (1322) and a third cutting edge (1323), forming, at the second knifepoint, a cutting angle β less than 180°.
Abstract:
Milling cutter (1), which can rotate about a cutter longitudinal axis (A), comprises a sleeve-shaped shaft (2) provided with an inner lying chip evacuation channel (11), which is arranged, in essence, symmetric to the cutter longitudinal axis (A), and with a suction opening (12). The milling cutter also comprises a milling head (3, 3a, 3b, 3c), which is held coaxial to the cutter longitudinal axis (A) and to the shaft (2) while being held on said shaft and which comprises, as cutting edges (7, 9), a face cutting edge (7) and a peripheral cutting edge (9). At least one cutting edge (7, 9) forms a positive rake angle (γa, γr) on the periphery of the milling head (3, 3a, 3b, 3c). The milling cutter (1) is particularly suited for machining light metals, especially for circular milling. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, possibly following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.
Abstract:
12. A rotationally drivable milling cutter has a cylindrical carrier body (10), which is equipped on its circumference with a plurality of cutting bodies (12) comprising a cutting material that is harder than hard metal. The cutting bodies (12) are embodied in platelike form and are each embodied and disposed such that the leading region of the radially outer circumferential edge forms the cutting edge, the adjacent side face (15) forms the first face with a negative rake angle, and the top face (17) diametrically opposite the bottom face forms the flank. To that end, the cutting bodies (12) are each secured with their bottom face on the end face of blind bores (30), in the circumferential face thereof, that are oriented with the angle to the shortest connecting line between the center point of the end face and the center longitudinal axis of the carrier body (10) such that the side face (15) adjacent to the cutting edge forms the predetermined rake angle.
Abstract:
A groove having a depth greater than 1 μm is efficiently cut out on glass as a work by use of a super-hard ball end mill. A groove having a depth equal to or above 1 μm is formed on a work made of a glassy inorganic material or a hard, brittle material by one session of cutting operation without generating damage while rotating a ball end mill at a high speed. A rotating shaft of the ball end mill has a relative tilt angle in a feeding direction of the ball end mill with respect to a cutting surface of the work when subjecting the work to cutting while rotating the ball end mill at a high speed. In this way, a cutting groove having a width of 200 μm and a depth of 20 μm is formed on a glass substrate as the work by one session of cutting operation.
Abstract:
A method of producing a tool insert is disclosed. A body (50) of a superabrasive material having major surfaces on each of opposite sides thereof is provided. It is typically an abrasive compact disc such as a PCBN or a PCD disc, for example. An array of spaced cores (58) filled with hard metal, such as cemented carbide, for example, extends from one major surface to the opposite major surface. The body is severed from one major surface to the opposite major surface along intersecting, transverse lines (68) around the respective hard metal cores to produce the tool insert. The body may include an interlayer (56) of hard metal intermediate the opposite major surfaces, preferably the same hard metal as the cores, such that the cores are integrally formed with the interlayer.
Abstract:
A milling cutter comprises a cutter body having two concentric annular rings. An outer ring is provided for rough milling and includes a plurality of cutting inserts equally spaced about the periphery of a cutter body. An inner finish ring comprises a ring member having a coating of abrasive material. As a result, a workpiece can be milled by a single milling cutter with the rough cutting inserts and then the abrasive material.
Abstract:
A method for cutting metal includes providing a rotating cutting tool and making a first cut in the material using a first tooth of the cutting tool, such that an amount of heat is conducted into the material. A second cut is made in the material using a second tooth of the cutting tool, before the heat dissipates from the material. The time between the first cut and the second cut is such that the heat softens the material and allows the second tooth to more easily cut the material.