Abstract:
A wheel assembly is provided. The wheel assembly includes a rim configured to receive a tire of an off-road vehicle. The wheel assembly also includes a flange member slidably received on the rim. The flange member has a flange portion with a terminal end defining a first axial extent of the flange member. The wheel assembly also includes a locking ring radially and axially interposed between the rim and flange member. The wheel assembly also includes a locking arrangement mounted between the rim and the flange member which has a second axial extent. The second axial extent is substantially axially adjacent to the first axial extent.
Abstract:
A transient heating burner including at least two burner elements each having a distribution nozzle configured to flow a fuel, and an annular nozzle surrounding the distribution nozzle and configured to flow an first oxidant, at least one staging nozzle configured to flow a second oxidant, and a controller programmed to independently control the fuel flow to each distribution nozzle such that at least one of the distribution nozzles is active and at least one of the distribution nozzles is passive, wherein an active distribution nozzle fuel flow is greater than an average fuel flow to the distribution nozzles and a passive nozzle fuel flow is less than the average fuel flow, and to control a staging ratio to be less than or equal to about 75%.
Abstract:
The present invention discloses a hinged type locking ring quick locking device, which is composed of a locking ring and fastening screws. The locking ring consists of an assembly A and an assembly B. The assembly A and the assembly B are connected through a hinge-shaped structure corresponding to one end of the assembly A and one end of the assembly B, and the other ends of the assembly A and the assembly B are of step-shaped structures capable of being closed and corresponding to each other. Threaded holes are arranged at corresponding positions of steps of the step structures, and the assembly A and the assembly B are fixedly connected through the fastening screws. The locking ring can be opened and closed through the hinge-shaped structure and can be installed without too much force.
Abstract:
A wheel assembly includes a wheel base and a side rim disposed about the wheel base. A recess is formed on an inside surface of the side rim. A cavity is disposed between the wheel base and the side rim. An air seal is disposed between the wheel base and the side rim. A locking mechanism secures the side rim in position around the wheel base. The locking mechanism is configured to prevent the air seal from disengaging with the inside surface and allowing air to exit the wheel assembly between the wheel base and the side rim when the locking mechanism is properly installed. The locking mechanism is also configured to permit the air seal to disengage the inside surface and allow air to exit the wheel assembly between the wheel base and the side rim when the locking mechanism is not properly installed.
Abstract:
Systems and methods disclosed herein may be useful for use in a lock ring assembly. In this regard, a lock ring assembly is provided comprising a wheel base having a side rim disposed about a circumference of the wheel base, an ID lock ring and an OD lock ring disposed within a gap between the wheel base and the side rim. The ID lock ring has two surface contacts with the wheel base and one surface contact with the side rim. The OD lock ring has two surface contacts with the side rim and one surface contact with the wheel base. In various embodiments, the ID lock ring and the OD lock ring are in contact.
Abstract:
A multi-piece safety wheel includes a plurality of circumferentially spaced, interlocking bosses and tabs on the inner rim portion and outer rim portion. In the event of improper disassembly of the wheel with an inflated tire mounted thereon, any failure of the wheel assembly fasteners will result in the outer rim portion separating from the inner rim portion a sufficient distance to vent air pressure from within the tire, at which point the interlocking bosses and tabs resist further movement of the outer rim portion. The outer rim portion is thereby resisted from becoming a potentially dangerous projectile. A method of safely deflating the tire upon improper disassembly of the multi-piece safety wheel is also provided.
Abstract:
An assembly for mounting a tire without independent inner tube including two conical metal mounting rings intended to receive the tire beads, positioned and locked on the hub of the vehicle by means of two circular lateral locking rings recessed in a hub, each locking ring being composed of a vulcanized rubber mix reinforced by and coating a reinforcement ring which is circumferentially elastic and radially resistant to compression.
Abstract:
A multi-piece rim includes a rim base including a first flange and a gutter band, a bead seat band including a second flange, a lock ring, and a first side ring located on a side of the first flange and a second side ring located on a side of the second flange. A circumferentially extending surface of the first flange and a tapered surface of a circumferentially extending inner surface of the first side ring and/or a circumferentially extending surface of the second flange and a tapered surface of a circumferentially extending inner surface of the second side ring are inclined radially outwardly in an axially outboard direction of the multi-piece rim, so that circumferential and radial slippage between rim members is prevented to suppress a fretting fatigue.
Abstract:
A technique for reducing the likelihood of fatigue damage to a wheel rim assembly (11) of the type having an annular wheel rim (13) with a first bead flange (19), a second separable bead flange (15, 21), and a retaining ring (17) disposable within a groove (35) in the wheel rim to secure the separable bead flange to the wheel rim includes forming the retaining ring to have an annular bead (41), a portion of which has an arcuate cross-sectional configuration by shaping the annular bead, in cross-section, as at least two tangentially joined circular segments (43, 45) of unequal radii (27, 29). Contact between the retaining ring and the wheel rim is limited to the arcuate portion as the sole contact region between retaining ring and wheel rim. The separable bead flange is formed to have a concave retaining ring engaging annular surface (25) which, in cross section has a finite radius of curvature (59) and the retaining ring is formed to have a separable bead flange engaging convex annular surface (23) which, in cross-section, has a finite radius of curvature (61). Each radius of curvature (59, 61) is constant throughout the respective engaging surfaces.
Abstract:
An assembly for mounting a tire without independent inner tube including two conical metal mounting rings intended to receive the tire beads, positioned and locked on the hub of the vehicle by means of two circular lateral locking rings recessed in a hub, each locking ring being composed of a vulcanized rubber mix reinforced by and coating a reinforcement ring which is circumferentially elastic and radially resistant to compression.