Abstract:
A method for regulating the drive torque following a load change in hybrid vehicles, in which the drive torque is influenced in a load change in that a brake slip at the driven wheel of the hybrid vehicle as a result of the load change is already counteracted in the beginning phase, in such a way that any effect on the lateral stability and thus the stability of the hybrid vehicle during driving is excluded. When brake slip occurs at the driven wheels because of a load change, the drive torque is applied via the electromotor(s) of the hybrid vehicle.
Abstract:
A system is provided for controlling the inertia of a vehicle's powertrain during sudden braking events. Torque generated by rapid deceleration of the vehicle's drive wheels during braking is prevented from being transmitted through the vehicle's driveline by a clutch which disengages the drive wheels from high effective inertia components in the driveline. The clutch is actuated by a signal produced by any of several sensors on the vehicle which sense a sudden braking event. Driveline speed is adjusted to match drive wheel speed before the clutch is deactivated to reengage driveline with the drive wheels.
Abstract:
A method of braking a vehicle which includes ground engaging wheels, and a braking system with ABS capability and including an operator actuated brake control, the ABS becoming operative in response to the operator actuating the brake control, and upon the braking system sensing the slippage or impending slippage of at least one of the ground wheels relative to the ground, to vary the braking force applied to the at least one of the wheels between, in alternative periods, an applied state in which the braking force is applied, and a released state in which the braking force is released, and characterised in that the method includes applying torque to assist acceleration of the wheel 16-19 at least during periods in which the braking force is released by the ABS.
Abstract:
A method for a Sensitive Electronic Stability Program (SESP) presents a general approach for the correction of maneuvers of turning into a bend at low speed. It integrates existing methods as well as subsequent extensions. SESP supplements the standard active yaw control (AYC) function. This allows the SESP to use variables and mechanisms of AYC, on the one hand. On the other hand, AYC continues operating unimpeded in the background and will intervene as usual when SESP cannot stabilize the vehicle appropriately. When the standard AYC intervenes, SESP control operations are forbidden, or running SESP control operations are stopped. This stop can take place either abruptly or (which is more comfortable) by way of a moderate decrease of the correcting variables.
Abstract:
An engine drag-torque control, particularly for motor vehicles, in which the engine torque is increased by an EDC augmenting torque when the driven wheels drop below a slip threshold due to the braking action of the engine and exhibit a brake slip which is too high. To improve the vehicle control during cornering on a roadway having a low coefficient of friction, it is provided to increase the slip threshold for the driven wheels to thereby set the drag-torque control to be more sensitive.
Abstract:
A method of controlling a drive train of a motor vehicle having an engine, wheels, a wheel slip control system, and an automatic transmission having a clutch, the clutch capable of being opened and closed, wherein the automatic transmission is controlled based upon signals generated by the wheel slip control system.
Abstract:
A control system for controlling engine braking effect of a vehicle includes a sensor section, an actuator section and a controller section at least. The sensor section includes sensors, such as longitudinal and lateral acceleration sensors or wheel speed sensors, for determining a vehicle operating variable indicative of slipperiness of a road surface. The actuator section varies a manipulated variable, such as a throttle opening degree, an air fuel ratio or a gear ratio, of an engine and transmission system to control the engine braking torque in response to a control signal. The controller section decreases the engine braking torque by varying the manipulated variable as the road surface becomes more slippery.
Abstract:
For the reduction of disadvantageous effects of engine stall torques on the braking behavior of a vehicle which is equipped with a brake unit having an anti-lock control system, the brake slip of the driven wheels is monitored independently of any actuation of the brake. In the event of a rotational behavior of the driven wheels which is typical of the effect of engine stall torques, in particular in the event of a brake slip at the driven wheels exceeding a limit value, brake pressure existing in the wheel brakes of the driven wheels is maintained constant or reduced, or, if the braking action has not yet commenced, the supply of brake pressure into the wheel brakes of the driven wheels is prevented.