Abstract:
A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
Abstract:
In general, a method includes receiving environmental information collected by an unmanned aerial vehicle (UAV), the environmental information being associated with one or more conditions of a data center, storing the environmental information on one or more memory devices that are accessible by the one or more computing devices, determining, based on the environmental information, that an event has occurred, and performing, by the one or more computing devices and based on determining that the event has occurred, one or more actions.
Abstract:
An apparatus for removing harmful gas components out of the earth's atmosphere is a free-flying autonomous lightweight aircraft with an onboard gas processing system including gas separation or extraction devices, and inlets and outlets connected to the devices. Solar cells and/or thermoelectric generators provided on the craft produce electrical energy to operate the individual devices. The system may include a cryogenic closed-loop circulation system that participates in liquefying the extracted gas components. The apparatus is preferably a lighter-than-air craft like a dirigible. A method of extracting harmful gas components from the atmosphere involves flying the apparatus at a prescribed altitude level and operating the gas processing system to remove the harmful gas component from the atmosphere, then returning the apparatus to earth to offload the liquefied stored harmful gas component.
Abstract:
The recoverable airborne instrument platform accurately determines its present position and uses this data to execute a predetermined flight plan and ultimately guide its descent to a predetermined landing site. This is accomplished by installing the instrument package payload in the aerodynamic exterior housing of the recoverable airborne instrument platform, which has a plurality of moveable control surfaces thereon to autonomously control the altitude, attitude and flight path of the recoverable airborne instrument platform. A navigation circuit contained within the aerodynamic housing determines the geographic location of the recoverable airborne instrument platform as well as the location of at least one predetermined recovery site. The determined position data is used to dynamically calculate a flight path which allows the guidance control circuit to both execute a predetermined flight plan and controllably descend the recoverable instrument platform to a selected predetermined recovery site. Upon arrival at the selected predetermined recovery site, the recoverable airborne instrument platform descends to a predetermined height over the selected predetermined recovery site and activates a parachute release mechanism to controllably descend to the selected predetermined recovery site.
Abstract:
An atmosphere sampling system includes: an unmanned rotary-wing aircraft platform including: an airframe capable of lifting a selected payload mass; at least one motorized rotor; and, a flight control system including an on-board controller; an atmosphere sampling unit having a total mass no greater than the selected payload mass, and including: a blower preferably having backward-facing blades, an inlet structure to draw in air to be sampled, and an outlet to discharge air after sampling; a plurality of sample containers; and, an indexing mechanism to move selected sample containers, one at a time, into contact with the inlet structure so that samples may be collected; and, a power supply with sufficient capacity to operate the motorized rotor(s), the onboard portion of the flight controller, the blower, and the indexing system.
Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate. The unmanned aerial vehicle includes a data center including a processor; a data storage component; and a wireless communications component. The unmanned aerial vehicle includes a hybrid generator system configured to provide power to the at least one rotor motor and to the data center, the hybrid generator system including a rechargeable battery configured to provide power to the at least one rotor motor; an engine configured to generate mechanical power; and a generator motor coupled to the engine and configured to generate electrical power from the mechanical power generated by the engine. The data center may include an intelligent data management module configured to control power distribution and execution of mission tasks in response to available power generation and mission task priorities.
Abstract:
Aspects of the subject disclosure may include, for example, a surveying system operable to receive a plurality of electromagnetic waves via a guided wave transceiver that include environmental data collected via a plurality of sensors at a plurality of remote sites. Weather pattern data is generated based on the environmental data. Other embodiments are disclosed.
Abstract:
Methods and apparatus are disclosed for vehicle navigation with water depth detection. An example disclosed method includes determining a current and a projected water depth for road segments of and around a current route to a destination. Additionally, the example method includes, in response to the current or the projected water depth of the road segments of the current route exceeding a first threshold, determining an alternate route to the destination.
Abstract:
Methods and devices are provided for controlling an unmanned aerial vehicle. The method includes: obtaining meteorological data in a current location of the UAV when the UAV is in a first flight state, where the first flight state may represent a steady flight state or a take-off preparing state of the UAV; determining a flight hazard level of the UAV based on the meteorological data, where the flight hazard level may represent a hazard level caused to a flight of the UAV by weather; and controlling the UAV to switch to a second flight state when the flight hazard level is a first preset level, where the first preset level may represent a level where the UAV cannot fly safely and the second flight state being used to represent an emergency flight state or a take-off suspended state of the UAV.
Abstract:
An uninhabited aerial vehicle includes: a calculator that calculates position information indicating a position and an altitude of the vehicle; an image capturing unit that captures an image; a lightning rod; a controller that controls the position and altitude of the vehicle; and a communicator which performs information communication, wherein the calculator transmits the position information to the communicator, the image capturing unit calculates a position of an object to be protected against a thunderbolt from the image, and transmits the calculated position to the communicator, the communicator transmits the position information received from the calculator and the position of the object received from the image capturing unit to the outside, and receives flight instruction information, and the controller controls the position and the altitude of the vehicle based on received flight instruction information of the received flight instruction information.