Abstract:
This invention proposes the use of Thermal Hydrolysis (or Thermal Carbonization) at different temperatures and pressures in alternate waste streams to achieve an optimal mix of high digestion rates and pasteurization rates while still achieving large viscosity reduction. In the disclosed embodiments means of combining Thermal Hydrolysis (or Thermal Carbonization) and Pasteurization including but not limited to placing the waste streams in parallel, placing them in series, utilizing heat input in parallel and heat exchangers in series are explored to optimize hydrolysis rates, minimize the use of high pressure tanks, optimize energy used, and manage viscosity characteristics of the solids.
Abstract:
A sludge dehydrating system and a method thereof based on a thermal hydrolysis technology include: a homogeneous slurry unit, a hydrothermal unit, a flash reactor, a waste heat recovery unit, and a dehydrator; wherein a viscosity of sludge is lowered by homogenously slurrying before entering a pump, which is conducive to transportation; a sludge tank firstly crashes and then quantitatively transports for improving a homogenizing efficiency; a diluent is sludge dehydrated filtrate which is mixed with flash steam in an ejector, wherein an mixing efficiency is high; during homogenously slurrying, waste steam generated is added into a sludge diluent pipe for being absorbed; a hydrothermal unit include a variety of forms such as an intermittent form and a continuous form, in such a manner that reaction parameters, especially reaction time are effectively guaranteed; the flash steam enters the homogeneous slurry unit for heating the sludge.
Abstract:
System (100) and method for processing biomass. The system comprises a combined heat and power plant (102), an interface (114) for feeding biogas to a traffic fuel production unit, interfaces (114) to a district heating system (106a) and an electrical grid (106b), and a hydrolysis device (108), a digestion device (110), a dryer (116) and a heat recovery unit (112), which are operatively coupled for transferring heat, intermediate products and final products of the process, wherein raw biomass is received into the Fuel hydrolysis device (108), biomass processed by the hydrolysis device (108) is fed to the digestion device (110), biogas obtained in the digestion device (110) is fed to the traffic fuel production unit (104), heat is recovered from the hydrolysis device (108), biomass processed by the digestion device (110) is dried by the heat recovered from the hydrolysis device (108), heat is recovered from the dryer (116), heat recovered from the dryer (116) is fed to the hydrolysis device (108) to be used in pre-heating of the received raw biomass, heat recovered from the dryer (116) is fed to the district heating (106a), and production of electricity is fueled by the dried biomass from the dryer (116).
Abstract:
The invention relates to a facility for treatment of an aqueous effluent by hydrothermal oxidation, which comprises: a reactor comprising a tube in which the aqueous effluent to be treated flows, the tube of the reactor having a plurality of bends formed by oxidant-injection devices, each oxidant-injection device comprising: a reactor part (32) forming an effluent-circulation channel (35) bent at an angle in which a flow of aqueous effluent can circulate, and an injector part (33) comprising a first opening (49) suitable for being connected to a source of oxidant located outside the effluent-circulation channel (35) and a second opening (50) located in the effluent-circulation channel (35), and a source of oxidant connected to the injector part so as to inject the pressurised oxidant into the flow of aqueous effluent to be treated.