摘要:
The present invention provides for an apparatus and method to manufacture optical fiber in a way that produces controlled and patterned diffusion of optical radiation along its length. The novelty of the described invention is that the patterns of diffusion are produced at the time the optical fiber is manufactured. The “in-line” manufacturing method avoids the need for post-production treatment of the fiber, which makes the process highly efficient and economical. Light diffusing optical fibers of significant length can be produced. Several manufacturing configurations to achieve the desired effects and their inclusion in the fiber production process are described. The processes can be configured to process optical fibers constructed from a wide variety of known glass, polymeric or other materials. The partially diffusing optical fibers of this invention have applications ranging from illuminated fabrics and toys and to lighting systems and medical instruments. A distributed sensor comprising a light detector coupled to a partially diffusing fiber is also disclosed.
摘要:
In an optical fiber composed of a core region and a cladding region surrounding the core region and having a plurality of regions made of sub mediums having refractive indices different from a refractive index of a main medium disposed in a main medium constituting this cladding region, these regions made of the sub mediums are arranged in one given or a plurality of a given circular annular regions and the centers of the regions made of the sub mediums in respective circular annular regions are arranged on the same circumference centered at the center of the core.
摘要:
An optical fiber having extended single-mode capabilities is described in which subwavelength microstructural voids are introduced into the core and/or cladding to allow a fine tuning of the difference between their effective refractive indices. The introduction of subwavelength microstructures into the optical material, preferably through a photolithographic process at the preform stage, allows for control of the effective refractive index difference between the core and the cladding that is more precise than the control afforded by chemical doping processes (e.g., flame hydrolysis) alone. Accordingly, the specified effective refractive index difference between the core and the cladding may be made smaller than that allowed by chemical doping processes alone, thereby allowing the optical fiber to exhibit single-mode properties for larger core diameters.
摘要:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
摘要:
In an optical fiber comprising a core region, an inner cladding region, and an outer cladding region which extend along its fiber axis, the average refractive index n0 of core region, the average refractive index n1 of inner cladding region, and the average refractive index n2 of outer cladding region satisfying the relationship of n1
摘要:
An optical fiber having optical characteristics that systematically vary along its length is made by inserting a plurality of cylindrical tablets into a cladding glass tube and overcladding the tube with particles of cladding glass. Each tablet contains a core region, and it optionally contains a layer of cladding glass Adjacent tablets are capable of forming optical fiber sections having different optical properties. Prior to consolidating the glass particles, chlorine flows through the tube and over the tablets. When the tube begins to sinter, the chlorine flow is stopped and the sintering particles generate an inwardly directed force that causes the tube to collapse inwardly onto the tablets which concurrently become fused to each other. The resultant draw blank can be drawn into a low loss optical fiber. This method is particularly useful for making dispersion managed single-mode optical fibers.
摘要:
An optical waveguide fiber suitable for making a spliced connection between two dissimilar optical waveguide fibers, the method of making the fiber, and the method of splicing dissimilar fibers to lower splice losses.
摘要:
The invention disclosed is an optical fiber which includes a central core glass region with a first refractive index profile. The fiber includes a second core glass region adjacent to and surrounding said central region, said second region having a thickness that varies along an axial direction of said second region and having a second refractive index profile that differs from said first profile. Additionally, the invention includes an optical fiber preform that can be drawn into the above fiber. The invention also includes the method of making the above describe optical fiber. Furthermore, the invention may also be practiced to make an optical fiber preform in accordance with the aforementioned invention. The aforementioned fiber and preform is particularly useful as a dispersion managed fiber or dispersion managed preform respectively.
摘要:
There is provided a dispersion-managed fiber preform and a fabricating method thereof preform by modified chemical vapor deposition (MCVD). A core and a clad having the refractive index distribution of an optical fiber with a positive dispersion value are uniformly deposited in a glass tube. The preform with the positive dispersion value is heated at every predetermined period with a torch and the heated preform portions are etched to have a negative dispersion value. Then, the preform alternately having positions with the positive dispersion value and positions with the negative dispersion value along the length direction is collapsed.
摘要:
An optical fiber has a section of the first kind having a chromatic dispersion not less than a given positive value x and a negative chromatic dispersion slope at a given wavelength and a section of the second kind has a chromatic dispersion not more than nullx and a positive chromatic dispersion slope at the same wavelength. Another optical fiber has a chromatic dispersion higher than a positive value x and a negative chromatic dispersion slope at a given wavelength band.