Abstract:
A process for transforming a gas oil cut into a dearomatized fuel with a high cetane number comprises at least one first, deep desulphurization and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatization, in which the desulphurized and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
Abstract:
A hydrocarbon distillate fraction is hydrotreated in a single stage by passing the distillate fraction downwardly over a stacked bed of two hydrotreating catalysts. The catalyst in the upper bed contains 0.1 to 15% by weight of platinum and/or palladium and also contains 2 to 40% by weight of at least one of tungsten, chromium, a Group VIIB metal, and an actinium series metal supported on an acidic refractory oxide carrier. The catalyst in the lower bed contains 1 to 15% by weight of a non-noble Group VIII metal and 1 to 25% by weight of a Group VIB metal on an amorphous, refractory oxide carrier. The liquid hydrocarbon product recovered has a reduced content of aromatics and a reduced heteroatom content.
Abstract:
A process combination is disclosed to selectively upgrade catalytically cracked gasoline to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock, preferably heavy naphtha, is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy synthesis naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
Abstract:
HIGH VISCOSITY INDEX LUBRICATING BASE OILS ARE PRODUCED FROM A DEASPHALTED OIL IN A MULTIZONE HYDROCRACKING PROCESS IN WHICH A SULFIDED NONACIDIC CATALYST COMPRISING ONE OR MORE METALS OF THE GROUP VI-B, VVII-B OR VIII METALS IS USED IN EACH REACTION ZONE. PREFERABLY, HYDROGEN SULFIDE AND/OR AMMONIA ARE REMOVED FROM THE FIRSTZONE EFFLUENT BEFORE INTRODUCING IT INTO THE SECOND ZONE. THE FIRST REACTION ZONE TEMPERATURE IS AT LEAST 750*F. WHILE THE SECOND REACTION ZONE TEMPERATURE IS AT LEAST 700*F.
Abstract:
The invention is a process for dearomatization and isomerization of a feedstock having less than or equal to 10 ppm by weight of sulphur, the process comprising:
Hydrodearomatizing the feedstock at a temperature ranging from 150 to 220° C. and at a pressure ranging from 20 to 150 bars, in order to provide a dearomatized product; Hydroisomerizing the dearomatized product at a temperature ranging from 250 to 320° C. and at a pressure ranging from 40 to 60 bars in the presence of a catalyst based on platinum or palladium, in order to provide an isomerized product; Hydrodearomatizing the isomerized product at a temperature ranging from 150 to 220° C. and at a pressure ranging from 20 to 150 bars, in order to provide an isomerized and dearomatized product.
Abstract:
A process for reducing the benzene content of a light reformate refinery stream comprises the following steps: a) reducing the benzene content by exposing the light reformate to hydrogenation conditions in a benzene-saturation reactor bed, b) increasing the octane number of the hydrogenated light reformate produced in step a) by exposing it to isomerization conditions, c) further reducing the benzene content by exposing the light reformate refinery stream to further hydrogenation conditions, wherein the isomerization of step b) occurs after step a), the hydrogenation of step c) does not precede the isomerization step b), and steps a), b) and c) are all carried out within the same reactor.
Abstract:
A process of producing Group III base oils, along with a naphtha product and diesel product, from whole waxy crude oil is provided. The inventive process omits the typical vacuum distillation stage and separations to form the typical cuts off of the vacuum tower. By selecting a waxy crude oil suitable for processing without separations, the crude oil may be hydroprocessed, dearomatized, dewaxed, and hydrofinished to produce a Group III base oil. Additionally, the dewaxing catalyst will isomerize the naphtha range molecules to increase the octane value to a suitable level for blending into gasoline and the diesel range molecules to reduce the diesel cloud point.
Abstract:
Systems and processes for the production of fuel and fuel blends involve the production of fuels for blending with one or more alcohols such as ethanol and/or butanol. A method for producing a fuel blend includes blending a light distillate product from an oil refinery with butanol. The fuel blending can be at the oil refinery.