Abstract:
A valve drive system capable of reducing the friction resistance of rocker arms and facilitating replacement work of tappet-clearance adjusting shims. The valve drive system can comprise a rocker arm that is slidable between a first position at which the pushing portion engages the shim and a second position at which the pushing portion is disengaged from the shim, and held in the first position through a spring.
Abstract:
A slidably movable member such as an adjusting shim used in a valve operating mechanism of an internal combustion engine of an automotive vehicle. The slidably movable member is used in contact with lubricating oil and comprises a substrate. A hard carbon-based film is coated on a surface of the substrate. The hard carbon-based film has a surface section which contains at least one of nitrogen and oxygen in an amount ranging from 0.5 to 30 at % and/or hydrogen in an amount of not more than 10 at %.
Abstract:
A method of making a ceramic article includes the providing a member. The member includes a cellulose-based material. The cellulose-based material is carbonized to carbon. At least a portion of the member is covered with silica sand after carbonization. At least a portion of the carbon of said member, which has been carbonized, is converted to silicon carbide.
Abstract:
A four-cycle engine includes a cylinder block defining a cylinder bore. A piston is reciprocally disposed within the cylinder bore. A cylinder head member closes an end of the cylinder bore to define a combustion chamber together with the cylinder bore and the piston. The cylinder head member defines an inner passage having a first end communicating with the combustion chamber and a second end terminating at an outer surface of the cylinder head. A valve assembly having a valve section and an actuateable section is provided. The valve section is selectively placed at an open position and a closed position to connect and disconnect the inner passage with the combustion chamber, respectively. The actuateable section is formed oppositely from the valve section. A valve actuation mechanism is arranged to actuate the actuateable section to move the valve section between the open position and the closed position. The cylinder head member further defines a guide opening through which the actuateable section is slideably disposed. An external conduit defines an outer passage communicating with the inner passage. The external conduit depends from an end portion of the cylinder head member. The cylinder head member still further defines a recessed portion between the guide opening and the second end of the inner passage.
Abstract:
A valve collet concentrically mounted onto a circumferential groove of a valve of a desmodromic valve system for retaining a shim concentrically mounted on the valve of the desmodromic valve system, the shim having an inside surface of a given shape. The valve collet comprises an inner surface having an interlocking portion in the shape of the circumferential groove, the interlocking portion being interlocked with the circumferential groove. The valve collet further comprises an outer surface protruding away from the interlocking portion, the outer surface having a retaining portion matching the shape of the inside surface of the shim and cooperating with the same so as to have an increased contact area with the inside surface and thereby to improve retaining of the shim. Preferably, the inner surface of the valve collet comprises a securing portion extending longitudinally along the valve so as to secure mounting of the valve collet on the valve. Because of its increased contact area with the shim and because of its design, the valve collet does not quickly wear out and/or change in shape, remains properly seated in its bedded position, and thus extends the time interval allowable between regular valve adjustments.
Abstract:
A tappet assembly for use with a valve train mechanism of an internal combustion engine that has angulated intake and exhaust valves actuated by the lobes of a pair of camshafts characterized in that the lobe of each camshaft serves to move the associated valve through an inverted bucket tappet incorporating a cylindrical force transmitting element which includes a surface that is skewed or inclined with respect to the bottom of the body of the tappet.
Abstract:
Between the end of a valve and a valve-operating cam in an internal combustion engine, a valve lifter is inserted. A filler enclosing portion is formed between a shim and the body of the valve lifter. Through an opening from an injector, a filler is introduced into the filler enclosing portion, so that valve clearance is corrected to zero. Differences in valve clearance can be easily corrected.
Abstract:
Described are sintered silicon nitride bodies useful as materials for parts required to have strength, especially excellent impact strength for items such as automobile parts and machine parts. The sintered Si.sub.3 N.sub.4 bodies contain 80-98 wt. % of silicon nitride and have a porosity not higher than 3% and an shock compressive elasticity limit of at least 15 GPa.
Abstract translation:描述了可用作对于诸如汽车部件和机器部件的物品具有强度,特别优异的冲击强度的部件的材料的烧结氮化硅体。 烧结的Si 3 N 4体含有80-98wt。 %的氮化硅,并且具有不高于3%的孔隙率和至少15GPa的冲击压缩弹性极限值。
Abstract:
There is provided a structure of a shim to be inserted in a clearance provided between a cam and a tappet in a moving valve mechanism of an internal combustion engine, wherein a volumetric density of the shim body is changed such that it is maximized at an upper surface of the shim, at which the shim is in contact with the cam when a compression load or shock from the cam is applied to the shim, and the density is gradually decreased from the maximized portion to a lower or peripheral portions.
Abstract:
A gauge for measuring the clearance between a cam of an engine camshaft and the relevant valve, during rotation of the camshaft, comprises a first movable feeler element, for contacting the cam profile, and a second movable feeler element, for contacting a surface, facing the cam, of the valve or of an element coupled to the valve. A retraction device can displace the second feeler element from a rest position to an operating position. Gauging heads provide a signal depending on the mutual position of the first and second feeler elements and a processing circuit processes these signals to obtain the clearance.