Abstract:
Pipe replacement devices, and systems are shown. Devices and systems may include jointed cutters and floating cutters to navigate difficult pipe replacement conditions. Devices and systems may also include replacement pipe with pre-installed supply hoses, such as lubricant supply and/or pneumatic supply hoses. Methods of pipe replacement are also described, including splitting old pipe and pulling in new pipe behind the equipment as splitting progresses.
Abstract:
Pipe replacement devices, and systems are shown. Devices and systems may include jointed cutters and floating cutters to navigate difficult pipe replacement conditions. Devices and systems may also include replacement pipe with pre-installed supply hoses, such as lubricant supply and/or pneumatic supply hoses. Methods of pipe replacement are also described, including splitting old pipe and pulling in new pipe behind the equipment as splitting progresses.
Abstract:
The invention relates to a system and method for containing and mitigating spills and leaks from pipelines. According to one embodiment, the system comprises a pipeline for transporting a liquid; a barrier layer comprising material impermeable to the liquid; a trench excavated with sufficient depth and width to accommodate at least the pipeline as well as the barrier layer; two berms; and backfill. The berms are substantially parallel and positioned on either side of the trench. The barrier layer is disposed to cover the trench and berms, reaching at least the ridgeline of the berms. The pipeline is disposed within the trench above the barrier layer. The backfill is placed on top of the pipeline and the barrier layer, and the backfill is graded to form a grade bridging the ridgelines of the berms.
Abstract:
Apparatuses, systems, and methods are provided for cutting a trench in soil or earth by driving a cutter tube member through the soil or earth, injecting compressed fluid into the tube member to break up the soil and drive it through the tube member along the flow of compressed fluid, imparting dynamic vibrational forces to the tube member to assist the flow of soil therethrough, ejecting the soil from the tube member, guiding and releasing media and/or filler material into the trench, and backfilling the trench with the ejected soil.
Abstract:
The present invention relates to a method for placing at least one duct/communication cable below a road surface in an area, said area comprising a first layer (L1 and a second layer (L2), said first layer (L1) being a road layer, such as asphalt or concrete, and said second layer (L2) being a bearing layer for said first layer (L1) and being located below said first layer (L1), said method comprising the steps of: cutting a micro trench in said area through said first layer (L1) into said second layer (L2); placing at least one duct/communication cable in said micro trench so that said at least one duct/communication cable is placed below said first layer (L1); and filling said micro trench so as to restore said road surface.
Abstract:
An extractor for removing agricultural tubing from soil of a field and related methods are provided. The extractor includes a frame and a pivot frame disposed on the frame. The pivot frame can have a pivot axis around which at least a portion of the pivot frame is pivotal. The extractor can include a first roller secured to the frame and a second roller secured to the pivot frame that is moveable by the pivot frame with the first roller being positioned closer to the soil than the second roller so that a tubing to be extracted is threadable under the first roller and over the second roller.
Abstract:
An agricultural implement that includes a slotting mechanism and a slotting actuator is provided. The slotting mechanism is for cutting slots in a drip line in real time in conjunction with ground placement of the drip line. The slotting actuator is for actuating the slotting mechanism. The actuating is controlled by a computer following a slot spacing in a drip line prescription for a field in which a drip line is being placed.
Abstract:
A casing puller includes a body and at least one arm. The body has first and second ends, at least one end connectable to a drill pipe. The body defines a longitudinal axis and sized for insertion into a casing pipe. The at least one arm is disposed on the body and moves between a stowed position and a deployed position. The at least one arm extends away from the longitudinal axis when in its deployed position and is arranged to engage an arm receiver defined by the casing pipe.
Abstract:
Apparatus and Method for Burying Elongate Member Apparatus for laying an elongate member in a trench, the apparatus comprises a main body portion; ground-contacting apparatus on which the main body portion is mounted and by which the apparatus may in use move over the ground; an elongate member moving device configured to move the elongate member from an initial position to a elongate member laying position; and a depressor attached to the main body portion and configured to guide the elongate member from its elongate member laying position to its in-trench location, the depressor having an elongate member entry portion and an elongate member exit portion, wherein the depressor is rotatable in use about an axis which is substantially parallel to the longitudinal axis of the elongate member.
Abstract:
A plough vehicle assembly that is able to lay pipe or cable, the pipe vehicle assembly comprising a plough vehicle and a support mounted to the plough vehicle to support a pipe to be laid, the support being offset from a longitudinal axis of the plough vehicle.