Abstract:
A fluid supply valve attachment device that has a tank, a fixing member in which a recessed fitting section is formed, a fluid supply valve that is inserted in and fixed to the recessed fitting section, a first seal member which seals a space between the tank and the fixing member, and a second seal member which seals a space between the fixing member and the fluid supply valve. The maximum inside diameter of the recessed fitting section is defined as D, a distance between a cross-sectional center of the first seal member and a cross-sectional center of the second seal member in a direction that a central axial line of the recessed fitting section extends in an attached state is defined as L1, and L1 is set within 2.5×D.
Abstract:
An opening section of a tank projects to the inside of the tank. In the inwardly projecting section, a fitting projects to the inside of the tank, surrounding a substantially cylindrical column-like valve. Also, an inner circumferential wall projects to the inside of the tank so as to surround the fitting. Further, a metal ring is provided surrounding the inner circumferential wall, and a metal nut is attached from the end in the direction of the projection of the inner circumferential wall. The metal ring and the metal nut function as support members for supporting the inner circumferential wall and increase the quality of the seal between the inner circumferential wall and the fitting.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector.
Abstract:
A fuel cell for use with a combustion tool for delivery of a predetermined amount of fuel with each stem actuation is provided and includes a housing defining an open end enclosed by a closure. A main valve stem has an outlet, disposed in operational relationship to the open end and reciprocating relative to the housing at least between a closed position wherein the stem is relatively extended, and an open position wherein the stem is relatively retracted. A fuel metering valve is located within the housing, associated with the main valve stem, including a fuel metering chamber disposed in close proximity to the closure and configured so that when the stem is in the open position, only a measured amount of fuel is dispensed through the outlet. In a preferred embodiment, the fuel cell housing includes a separate fuel container, and the fuel metering valve includes a valve body having a second end opposite the fuel metering chamber located within the container.
Abstract:
A valve device for high-pressure gas opens and closes a communication hole for communicating a primary pressure chamber, into which the high-pressure gas flows, to a secondary pressure chamber where pressure is lower than that of the primary pressure chamber. The valve device has a valve seat member provided at the communication hole and a valve body that is caused to be seated on and to leave from the valve seat member to open and close the communication hole. The communication hole has an opening connected to the primary pressure chamber. The opening has a reception recess opened toward the primary pressure chamber. In the reception recess is fitted the valve seat member. As a result, the valve device can achieve sufficient sealing ability.
Abstract:
In one aspect, there is disclosed a method of detecting a hydrogen leak in a fuel cell system, including the steps of (a) calculating a mass of hydrogen in a fuel tank, HT new, at a time step, (b) calculating a mass of the hydrogen consumed by the fuel cell at the time step, HFcp new, (c) calculating a total amount of hydrogen that has left the tank from a start to the time step, HTcons, (d) calculating a total amount of hydrogen consumption, HFcpcons, (e) calculating a difference between HTcons and HFcpcons at the time-step, (f) determining if the difference is above a predetermined threshold, and (g) performing an action based on the determination of step (f).
Abstract:
Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Abstract:
A compressed gas storage system includes a gas tank formed for storing therein compressed gas, a gas discharge path provided in the gas tank, a solenoid valve connected to the gas discharge path and disposed in an interior of the gas tank for controlling the flow of compressed gas that goes out of the gas tank and a control unit to which the solenoid valve is connected. An outer circumferential surface of the solenoid valve is covered with a cover, so that a space defined between the cover and the outer circumferential surface is made to communicate with the gas discharge path to thereby form a gas flow path. A heat transfer fin is formed on an inner circumferential surface of the cover in such a manner as to extend radially inwardly, so as to be brought into contact with the outer circumferential surface of the solenoid valve.
Abstract:
A low-temperature/cryogenic liquid-storage structure has an inner tank liner made of conventional low-temperature/cryogenic tank-quality plates with structural members that provide flexibility. The plates are mounted on connectors that accommodate movement of the liner with respect to the bearing wall. The plates have a thickness of between 1/16″ and ½″ and a surface area of at least 100 square feet. The structural members are conventional construction materials that have a wall thickness of more than 1/16″. Load-bearing insulation extends between the outer surface of the inner tank liner and the inner surface of an outer bearing wall that is impervious to vapor.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.