Thermo-optic system employing self reference
    41.
    发明授权
    Thermo-optic system employing self reference 有权
    采用自我参考的热光学系统

    公开(公告)号:US07750300B2

    公开(公告)日:2010-07-06

    申请号:US11709113

    申请日:2007-02-21

    Abstract: A thermo-optic system, which may be used for example in thermal imaging, includes an array of optical elements each having a thermally responsive optical property, the optical elements including signal elements and reference elements configured to provide (1) a common-mode response of the optical property to ambient temperature and (2) a differential-mode response of the optical property to a thermal signal appearing across the array of optical elements. The system also includes an optical readout subsystem configured to (1) illuminate the array of optical elements with optical energy at a readout wavelength corresponding to the optical property so as to generate a composite optical signal having common-mode and differential-mode signal components corresponding to the common-mode and differential-mode responses respectively of the signal and reference elements, and (2) filter the composite optical signal to generate a filtered optical signal being substantially the differential-mode image component.

    Abstract translation: 可以用于例如热成像的热光学系统包括各自具有热响应光学特性的光学元件阵列,所述光学元件包括信号元件和参考元件,其被配置为提供(1)共模响应 的光学特性与(2)光学特性对出现在光学元件阵列上的热信号的差分模式响应。 该系统还包括光学读出子系统,其配置为(1)以对应于光学特性的读出波长的光能照射光学元件阵列,以便产生具有对应于共模和差模信号分量的复合光信号 分别耦合到信号和参考元件的共模和差分模式响应,以及(2)滤波复合光信号以产生基本上为差分模式图像分量的滤波光信号。

    Extreme Temperature Robust Optical Sensor Designs And Fault-Tolerant Signal Processing
    42.
    发明申请
    Extreme Temperature Robust Optical Sensor Designs And Fault-Tolerant Signal Processing 失效
    极端温度鲁棒光学传感器设计和容错信号处理

    公开(公告)号:US20090296776A1

    公开(公告)日:2009-12-03

    申请号:US12468359

    申请日:2009-05-19

    Abstract: Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

    Abstract translation: 用于极端温度和压力感测的碳化硅(SiC)探针设计使用封装在烧结SiC材料探针中的单晶SiC光学芯片。 SiC芯片可以被保护,仅用于高温或仅用于温度和压力感测。 混合信号处理技术允许容错极端温度感测。 波长峰 - 峰(或零到零)的共同频谱扩展测量以检测波长峰值/零位移测量使用宽带频谱监测形成粗细温度测量。 SiC探头前端充当稳定的发射率黑体散热器,并监测辐射光谱的偏移能够实现高温计。 该应用将所有SiC高温测量法与自由光谱范围内的厚SiC标准具激光干涉测量结合在一起,形成粗细温度测量传感器。 RF陷波滤波技术提高了温度测量的灵敏度,需要精细的光谱偏移或光谱测量来推断温度。

    Method for measuring physical quantity of measurement object in substrate processing apparatus and storage medium storing program for implementing the method
    43.
    发明授权
    Method for measuring physical quantity of measurement object in substrate processing apparatus and storage medium storing program for implementing the method 有权
    用于测量基板处理装置中的测量对象的物理量的方法和用于实现该方法的存储介质存储程序

    公开(公告)号:US07542148B2

    公开(公告)日:2009-06-02

    申请号:US11564604

    申请日:2006-11-29

    Abstract: A method capable of accurately measuring a physical quantity of a measurement object in a substrate processing apparatus. In a temperature measurement apparatus for implementing the method, two interference positions are measured at different timings when a reference mirror is caused to move in the direction away from a collimator fiber, and a difference between the two interference positions is calculated. When the reference mirror remote from the collimator fiber is caused to move toward the collimator fiber, two interference positions are measured at different timings, and a difference between the two interference positions is calculated. An average value of the interference position differences is calculated, an optical path length difference is determined from the average value, and a wafer temperature is calculated from the optical path length difference.

    Abstract translation: 一种能够精确地测量基板处理装置中的测量对象的物理量的方法。 在实现该方法的温度测量装置中,当使参考反射镜沿远离准直光纤的方向移动时,在不同的定时测量两个干涉位置,并且计算两个干涉位置之间的差。 当使远离准直光纤的参考镜向准直器光纤移动时,在不同的定时测量两个干涉位置,并且计算两个干涉位置之间的差。 计算干涉位置差的平均值,根据平均值确定光程长度差,并根据光程长度差计算晶片温度。

    METHOD FOR MEASURING PHYSICAL QUANTITY OF MEASUREMENT OBJECT IN SUBSTRATE PROCESSING APPARATUS AND STORAGE MEDIUM STORING PROGRAM FOR IMPLEMENTING THE METHOD
    44.
    发明申请
    METHOD FOR MEASURING PHYSICAL QUANTITY OF MEASUREMENT OBJECT IN SUBSTRATE PROCESSING APPARATUS AND STORAGE MEDIUM STORING PROGRAM FOR IMPLEMENTING THE METHOD 有权
    用于测量基板处理设备中的测量物体的物理量的方法和用于实现方法的存储介质存储程序

    公开(公告)号:US20070127034A1

    公开(公告)日:2007-06-07

    申请号:US11564604

    申请日:2006-11-29

    Abstract: A method capable of accurately measuring a physical quantity of a measurement object in a substrate processing apparatus. In a temperature measurement apparatus for implementing the method, two interference positions are measured at different timings when a reference mirror is caused to move in the direction away from a collimator fiber, and a difference between the two interference positions is calculated. When the reference mirror remote from the collimator fiber is caused to move toward the collimator fiber, two interference positions are measured at different timings, and a difference between the two interference positions is calculated. An average value of the interference position differences is calculated, an optical path length difference is determined from the average value, and a wafer temperature is calculated from the optical path length difference.

    Abstract translation: 一种能够精确地测量基板处理装置中的测量对象的物理量的方法。 在实现该方法的温度测量装置中,当使参考反射镜沿远离准直光纤的方向移动时,在不同的定时测量两个干涉位置,并且计算两个干涉位置之间的差。 当使远离准直光纤的参考镜向准直器光纤移动时,在不同的定时测量两个干涉位置,并且计算两个干涉位置之间的差。 计算干涉位置差的平均值,根据平均值确定光程长度差,并根据光程长度差计算晶片温度。

    Method and apparatus for the estimation of the temperature of a blackbody radiator
    45.
    发明授权
    Method and apparatus for the estimation of the temperature of a blackbody radiator 失效
    用于估计黑体散热器的温度的方法和装置

    公开(公告)号:US07001068B2

    公开(公告)日:2006-02-21

    申请号:US10492889

    申请日:2002-10-18

    Applicant: John Howard

    Inventor: John Howard

    Abstract: Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.

    Abstract translation: 通过使其辐射(24)通过调制的红外滤光器光谱仪来实现对灰体或黑体辐射体的温度的遥感。 红外滤光器依次包括带通滤波器(20),偏振辐射的第一偏振器(21),将偏振辐射分成两个正交极化分量的电光元件(22)和第二偏振器 (23)。 透镜(28)将离开第二偏振器的辐射图像到检测器(27)上。 来自检测器(27)的电信号被输入到数字分析器。 通常包括双折射晶体组件(25)和双折射装饰板(26)的电光元件(22)被配置为使得通过它的正交极化分量的净光学延迟使得重组组分为 在它们的干涉图中的峰或谷附近。 将正弦变化的电压施加到电光元件以调节通过电光元件的部件的净延迟。 数字分析仪被编程为计算其从检测器(27)接收的信号的谐波振幅比(在调制电压的频率的基波和二次谐波处的信号幅度的比率)。 谐波振幅比是散热器的温度的函数,可以通过参考校准查找表来估计。

    Laser radiometer
    46.
    发明授权
    Laser radiometer 失效
    激光辐射计

    公开(公告)号:US4417822A

    公开(公告)日:1983-11-29

    申请号:US319244

    申请日:1981-11-09

    Abstract: The present invention teaches a unique laser radiometer capable of accurately measuring the radiation temperature of a radiant surface and independently measuring the surface's emissivity. A narrow-band radiometer is combined with a laser reflectometer to measure concurrently radiance and emissivity of a remote, hot surface. Together, radiance and emissivity yield the true surface temperature of the remote target. A narrow receiver bandwidth is attained by one of two methods; (a) heterodyne detection or (b) optical filtering. A direct measurement of emissivity is used to adjust the value obtained for the thermal radiation signal to substantially enhance the accuracy of the temperature measurement for a given subject surface. The technique provides substantially high detection sensitivity over a very narrow spectral bandwidth.

    Abstract translation: 本发明教导了一种独特的激光辐射计,能够精确地测量辐射表面的辐射温度并独立地测量表面的发射率。 窄带辐射计与激光反射计相结合,以测量远程热表面的辐射和发射率。 一起,辐射和发射率产生远程目标的真实表面温度。 通过两种方法之一获得窄的接收机带宽; (a)外差检测或(b)光学滤波。 使用辐射率的直接测量来调整对于热辐射信号获得的值,以显着提高给定对象表面的温度测量的精度。 该技术在非常窄的光谱带宽上提供了显着高的检测灵敏度。

Patent Agency Ranking