Abstract:
Methods and systems for smart handling of warehouse items. An embodiment takes the form of a wearable accessory that is configured to (a) identify an object, (b) detect an attachment-triggering event, (c) responsive to detecting the attachment-triggering event, attach to the object, (d) determine at least one handling constraint associated with the object, where the at least one handling constraint includes an acceptable pressure range, (e) measure a pressure exerted on the object via the accessory, (f) provide an indication, via a user interface, based on the measured pressure and the acceptable pressure range; and (g) detect a release-triggering event, and responsively release the object.
Abstract:
There is provided a system including a wireless tag reader, a first wireless antenna, a wireless tag including an integrated circuit (IC), a conductive element electronically connecting the wireless tag to the first wireless antenna, a non-transitory memory storing an executable code, a hardware processor executing the executable code to transmit an interrogation signal, receive a tag signal from the wireless tag electronically connected to the first wireless antenna in response to the interrogation signal, the tag signal including a wireless tag identification (ID) uniquely identifying the wireless tag, and determine an interaction by a user with the wireless tag based on the tag signal.
Abstract:
There is provided a system including a plurality of radio frequency (RF) tags, each corresponding to one of a plurality of individuals, a memory, and a processor configured to receive a signal from a first RF tag of the plurality of RF tags, the signal including a first tag identification (ID) uniquely identifying the first RF tag, follow a motion of the first RF tag, follow a motion of a first individual of the plurality of individuals, and determine a first likelihood that the first RF tag corresponds to the first individual based on the motion of the first RF tag and the motion of the first individual.
Abstract:
A chip structure for mounting on a clearance area of a printed circuit board includes a packaged chip and a monopole coupling antenna. The packaged chip has an insulating body, an electronic component embedded in the insulating body, and a plurality of grounding pads electrically connected to the electronic component. The monopole coupling antenna has a grounding radiating metal and a monopole radiating metal. The packaged chip is electrically connected to the grounding radiating metal by the grounding pads. The monopole radiating metal is disposed on the insulating body and spaced apart from the electronic component and the grounding radiating metal. The monopole radiating metal is configured to couple the grounding radiating metal and the electronic component by using a feeding circuit to connect the packaged chip and the monopole radiating metal and using a grounding circuit to connect the grounding radiating metal and the printed circuit board.
Abstract:
A multi-mode ring scanner (MMRS) has a ring unit for wearing on a finger. The MMRS optionally has a wrist unit coupled to the ring unit, such as via a cable. The MMRS optionally communicates wirelessly with a computing device. The ring unit has one or more scanners (such as an optical scanner or an RFID tag reader). The ring unit optionally has two paddle switches for activation by inward pressure from fingers adjacent to the finger. The two switches enable specifying operation of the MMRS in a plurality of modes and/or to communicate a plurality of information codes to the computing device. The computing device is optionally enabled to assign a function to each combination of activation of the two switches. A scanning system including the MMRS optionally provides feedback to a user based on feedback from a host processor.
Abstract:
Identifying a tool touching a touchscreen device. A touch location of a tool on a touch-sensitive surface is received from a touchscreen controller. Based on the touch location, one of a plurality of electrodes disposed at locations across the touchscreen is selected and an electric circuit is enabled. The electric circuit includes a signal generator attached to the tool that transmits a modulated identification (ID) signal, a parasitic capacitance path between the signal generator and the selected electrode, a demodulator connected to the selected electrode that receives the ID signal, a resistive layer connected to the demodulator, covering the touch-sensitive surface, and a resistive path through the tool to the signal generator. The demodulator demodulates the modulated ID signal to recover a bit sequence. The tool is identified, based on the recovered bit sequence.
Abstract:
Disclosed is a secure telephone call management system for authenticating users of a telephone system in an institutional facility. Authentication of the users is accomplished by using a personal identification number, preferably in conjunction with speaker independent voice recognition and speaker dependent voice identification. When a user first enters the system, the user speaks his or her name which is used as a sample voice print. During each subsequent use of the system, the user is required to speak his or her name. Voice identification software is used to verify that the provided speech matches the sample voice print. The secure system includes accounting software to limit access based on funds in a user's account or other related limitations. Management software implements widespread or local changes to the system and can modify or set any number of user account parameters.
Abstract:
An inventory system can include radio frequency identification (RFID) tags and RFID tuners that can be brought into interacting proximity with one another to provide input or other information about the location or other condition of movable elements within the inventory system. For example, a closed or at least partially open state of a drawer can be determined based on signals from an RFID tag when the RFID tag and a corresponding RFID tuner are mounted on opposing faces of the drawer and a compartment that receives the drawer.
Abstract:
A chip structure for mounting on a clearance area of a printed circuit board includes a packaged chip and a monopole coupling antenna. The packaged chip has an insulating body, an electronic component embedded in the insulating body, and a plurality of grounding pads electrically connected to the electronic component. The monopole coupling antenna has a grounding radiating metal and a monopole radiating metal. The packaged chip is electrically connected to the grounding radiating metal by the grounding pads. The monopole radiating metal is disposed on the insulating body and spaced apart from the electronic component and the grounding radiating metal. The monopole radiating metal is configured to couple the grounding radiating metal and the electronic component by using a feeding circuit to connect the packaged chip and the monopole radiating metal and using a grounding circuit to connect the grounding radiating metal and the printed circuit board.
Abstract:
A wearable RFID device may include one or more manually activated RFID tags configured to transmit unique RFID signals in response to a manual activation thereof. Such wearable RFID devices may be worn about any aspect of a user's body, such as a hand, a wrist or an arm of the user, who may contact the manually activated RFID tag and transmit an RFID signal that is consistent with a particular action or instruction associated with a task. The action or the instruction may be executed based on the RFID signal, or upon receiving a confluence or sequence of RFID signals. Additionally, a wearable RFID device may be recognized by one or more discrete systems and configured to operate such systems accordingly.