Abstract:
A memory device includes a clock buffer circuit. The clock buffer circuit includes a cross-coupled logic circuit. The cross-coupled logic circuit has at least two logic gates in which an output of at least one of the logic gates is coupled to an input of at least one of the logic gates. The cross-coupled logic circuit is coupled to an input for accepting a clock signal. The memory device also includes a clock driver operable to generate a clock signal from the output of the cross-coupled logic circuit. A feedback loop from the clock signal to the cross-coupled logic circuit controls the cross-coupled logic circuit. A buffer circuit including a tri-state inverter is coupled to the clock signal to maintain the clock signal while avoiding contention with the clock generator. The memory device is enabled by a chip select signal.
Abstract:
A memory device is configured to operate in first and second data input/output modes. The memory device includes a first electrode pad, a second electrode pad, a clock signal line, a first switching unit, and a second switching unit. The clock signal line is configured to transmit a clock to an integrated circuit inside the memory device. The first switching unit switches to electrically connect the first electrode pad and the clock signal line in response to a control signal occurring for the first data input/output mode. The second switching unit switches to electrically connect the second electrode pad and the clock signal line in response to an inverse signal of the control signal occurring for the second data input/output mode.
Abstract:
An input buffer circuit includes a logic unit, a clock enable buffer, and a clock buffer. The logic unit is configured to receive a clock signal and a clock enable signal, and to output a decision signal indicative of whether the clock signal is normally input, where the decision signal is activated when the clock signal is normally input. The clock enable buffer is configured to buffer the clock enable signal and to activate an internal clock enable signal, in response to an activation of the decision signal. The clock buffer is configured to buffer the clock signal and to output an internal clock signal, in response to an activation of the internal clock enable signal.
Abstract:
In one embodiment, an integrated circuit includes a logic circuit and a memory circuit that includes multiple bit lines and bit line precharge circuits. The memory circuit may include level shifters for control signals generated from logic circuit inputs, and particularly there may be one or more level shifters that generate precharge enable signals to control the bit line precharge circuits. The level shifters for the bit line precharge circuits may also be controlled, during periods of time that the memory circuit is idle, by an input control signal (FloatBL herein). If the FloatBL signal is asserted, the bit line precharge circuits may be disabled to float the bit lines. In some embodiments, the FloatBL signal may also disable bit line bit line hold circuits on the bit lines. In some embodiments, when the memory circuit is exiting an idle state, the bit line precharge circuits may be enabled in a staggered fashion.
Abstract:
An input circuit is disclosed. The input circuit can include a cross voltage generating block that can be configured to perform charge-sharing on a pair of input signals whose phases are opposite to each other and generate a cross voltage, and an input buffer block that can be configured to buffer the pair of input signals at a voltage level corresponding to a voltage level of the cross voltage and generate an output signal.
Abstract:
A refresh signal generating circuit of a semiconductor memory device includes a flag signal generator which generates a flag signal in response to a refresh signal and a precharge signal, a clock enable signal buffer which generates first and second buffer enable signals based on an external clock enable signal in response to the flag signal, and a chip select signal buffer which generates an internal chip select signal based on an external chip select signal in response to the flag signal.
Abstract:
Embodiments of the invention relate to a control circuit comprising a clock signal connection for receiving a system clock signal, a write signal connection for receiving a write signal, and a write control circuit for executing write commands, wherein the write control circuit is designed to start executing a write command when a write signal is applied to the write signal connection during an edge of the system clock signal.
Abstract:
A semiconductor integrated circuit includes a first buffer and a second buffer having different operational timing, a first voltage power supply for generating a first power supply voltage supplied to the first buffer in accordance with the operational timing of the first buffer, and a second voltage power supply for generating a second power supply voltage supplied to the second buffer in accordance with the operational timing of the second buffer.
Abstract:
A semiconductor memory apparatus includes a rising output data generator that generates rising output data from rising data in response to a rising clock and a rising output enable signal. A rising data output buffer buffers the rising output data. A falling output data generator generates falling output data from falling data in response to a falling clock and a falling output enable signal. A falling data output buffer buffers the falling output data.
Abstract:
An integrated semiconductor memory device includes a first input amplifier which, compared with a second input amplifier, has a lower sensitivity with regard to level fluctuations of its respective input signal. A control circuit drives a controllable switch in such a way that when a noisy clock signal is applied to the integrated semiconductor memory device, the less sensitive input amplifier is used for generating an internal clock signal. If, by contrast, a lower-noise clock signal is applied to the integrated semiconductor memory device, the control circuit drives the controllable switch in such a way that the more sensitive input amplifier is used for generating the internal clock signal. The changeover of the controllable switch is effected after evaluation of a bit sequence applied to a further input terminal of the integrated semiconductor memory device.