Abstract:
In a synthesizer system having a reference oscillator selectively operable in either a voltage-controlled or an injection-locked mode, a circuit for effecting the appropriate mode of operation. The circuit includes an analog gate coupled between the output of a crystal oscillator and the input of the reference oscillator. The analog gate is driven by a logic element responsive to a plurality of signals indicative of specific operating conditions. In particular, the circuit assures that the reference oscillator is coupled to the crystal oscillator, that is, the reference oscillator operates in the injection locked mode, while the synthesizer PLL achieves acquisition.
Abstract:
A selectively tunable heterodyne receiver including a plurality of frequency conversion stages which can be tuned to a desired receiving frequency by the use of two voltages which control the coarse and fine tuning adjustments and wherein the first voltage is supplied to a first injection oscillator to control the harmonic output of a crystal controlled harmonic generator and wherein the second voltage is supplied to a second injection oscillator which is continuously variable within a frequency range corresponding to the frequency spacing between the adjacent harmonics of the harmonic generator and wherein the second oscillator is stabilized to the desired adjusted frequency.
Abstract:
A tuning system for a television receiver includes a local oscillator which is controlled first by a phase lock loop arrangement and then by an AFT discriminator arrangement for tuning the receiver to non-standard as well as standard frequency carriers. The phase lock loop arrangement includes a programmable divider for dividing the local oscillator frequency by a programmable factor corresponding to the presently selected channel. When the local oscillator is being controlled by the AFT discriminator arrangement, the count accumulated by the programmable divider during a reference interval determines how far the local oscillator frequency has drifted from its nominal value. If a predetermined frequency offset has been exceeded, control is returned to phase lock loop control and the programmable factor is incrementally changed.
Abstract:
A tuning system for a television receiver includes a phase locked loop for tuning a local oscillator to the nominal local oscillator frequencies required to tune the receiver to RF carriers at standard broadcast frequencies allocated to the various channels a viewer may select. The tuning system also includes an automatic fine tuning (AFT) frequency discriminator for tuning the local oscillator to minimize any deviation between the frequency of an actual picture carrier and the nominal picture carrier frequency. If the receiver is coupled to a television distribution system which provides RF carriers having nonstandard frequencies arbitrarily near respective ones of the standard broadcast frequencies, when the phase locked loop has achieved lock at a nominal frequency, a mode control unit selectively couples the discriminator and a frequency drift control circuit to the local oscillator. If the frequency of the local oscillator drifts more than a predetermined offset from the frequency synthesized under phase locked loop control because no carrier has been detected by the discriminator, discriminator and drift control are terminated so that the receiver will not be tuned to an undesired carrier such as, for example, the lower adjacent channel sound carrier, and phase locked loop control is reinitiated to synthesize a local oscillator signal having a frequency different from the frequency of the originally synthesized local oscillator signal by a predetermined amount. After the phase locked loop is locked at the new frequency, discriminator control is again initiated.
Abstract:
An arrangement is disclosed for programming a desired count in a first N-stage digital counter employed in a frequency control circuit for a variable voltage oscillator in a radio receiver. A second N-stage digital counter stepped by a clock pulse generator is provided with auxiliary outputs representing the count in each stage thereof in a format compatible with the programming input of the first counter. The count of each stage of the first counter may be set selectively either from a memory bank associated with the corresponding stage of the second counter, or directly from the auxiliary output of such corresponding stage. Means are described for disabling the clock pulse generators whenever the receiver detects a transmitted signal whose amplitude exceeds a predetermined threshold.
Abstract:
Described are a method for generating a metric that is a function of a phase difference between a modulated carrier and a local carrier, and a phase detector for performing such a method. A baseband symbol is obtained from the modulated carrier, and the phase of the symbol is determined. Assuming that the modulation used to modulate the modulated carrier has a constellation diagram with M-fold rotational symmetry, the metric can be generated from the phase by evaluating a base function that includes a triangle wave having positively and negatively sloped linear segments whose slopes have identical absolute values and that is periodic with a period of 2π/M radians. Alternatively or additionally, if the ideal symbol phases are uniformly distributed, the metric can be generated by evaluating a version of the base function in which the ideal symbol phases correspond to identically valued metrics located on the triangle wave.
Abstract:
Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
Abstract:
Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.