Abstract:
A composite structure is provided including a first fabric and a second fabric. A substantially elongate and substantially rigid first member is spaced apart from and coupled with the first fabric via the second fabric. A resin substantially is infused into the first fabric and the second fabric, and substantially encapsulates the first member to form a unitary structure.
Abstract:
The invention proposes a collar intended to be placed around a portion of a tube and in contact with a separator between a first space and a second space. The collar has a generally annular shape and comprises a superimposition of alternating layers of silicone adhesive and fabrics and an upper layer of silicone elastomer.
Abstract:
Decorative system composites and methods for forming the same are described. The composites employ new and improved support film systems that have enhanced tensile strength under typical thermoforming conditions, including elevated temperatures. An optional release film can be used in conjunction with the support film. The support film is particularly suitable for use with decorative films used to impart a surface effect, such as paint or color-containing film systems, to a thermoformed plastic component. The support film systems also possess enhanced bag/sag/drape control characteristics.
Abstract:
Decorative system composites and methods for forming the same are described. The composites employ new and improved support film systems that have enhanced tensile strength under typical thermoforming conditions, including elevated temperatures. An optional release film can be used in conjunction with the support film. The support film is particularly suitable for use with decorative films used to impart a surface effect, such as paint or color-containing film systems, to a thermoformed plastic component. The support film systems also possess enhanced bag/sag/drape control characteristics.
Abstract:
Decorative system composites and methods for forming the same are described. The composites employ new and improved support film systems that have enhanced tensile strength under typical thermoforming conditions, including elevated temperatures. An optional release film can be used in conjunction with the support film. The support film is particularly suitable for use with decorative films used to impart a surface effect, such as paint or color-containing film systems, to a thermoformed plastic component. The support film systems also possess enhanced bag/sag/drape control characteristics.
Abstract:
Method and apparatus for welding two container walls of plastic film (1, 2) to a plastic tube (3) having a substantially circular cross section, wherein the plastic tube (3) is arranged between two parallelly arranged plastic films (1, 2). The two plastic films (1, 2) are made to extend along the outer surface of the plastic tube (3) and to abut each other along a joint face (7) between two welding jaws (5, 6) in an area (8) adjoining the plastic tube (3). The plastic films (1, 2) are welded by means of welding jaws (5, 6) to the outer face of the plastic tube (3) and welded together in the area (8) adjoining the plastic tube (3). The plastic tube (3) is deformed during welding by means of a compressive force applied by the welding jaws (5, (5) to provide the outer surface of the plastic tube (3) with a substantially plane portion (9) extending on both sides of the joint face (7) and substantially perpendicular thereto.
Abstract:
A manufacturing apparatus and process to effect substantial automatic wrapping of the edges of a covered article, namely, the wrapping of cover sheet flaps around the edges of a substrate and the adhesive securement of the cover sheet flaps to the back side of the substrate, to form an upholstered article such as a pad or panel in a highly automated process which eliminates significant manual manipulations.
Abstract:
A cost effective manufacturing process encapsulates a light emitting polymer (LEP) device between two flexible sheet materials, where one sheet may act as the substrate for the LEP device and the other sheet may act as a cover for the LEP device, and at least one of the sheets is transparent. Both encapsulating sheets and, as required, an adhesive system binding the sheets together provide sufficient environmental barriers with low moisture vapor transmission rates (MVTR) and oxygen transmission rates (OTR). The encapsulating sheets may, for example, be laminated together, sandwiching the LEP device in a vacuum, or oxygen/moisture free, and inert gas environment. Prior to encapsulation the LEP device may be heated and placed in a vacuum to remove moisture, air and residual solvents. The process may also be designed for roll to roll, sometimes called web based processing, where the LEP device and/or encapsulating sheet material are in a continuous roll format with an adhesive with low air permittivity, such as some UV or thermal curable epoxies, or a melt lamination process used to attach the encapsulating sheets. For LEP devices with short lifetime requirements, the encapsulating material may be in liquid form and applied by spraying, dipping, doctor balding, and the like, or printing, such as screen printing, roller coating or lithographic application in single or multiple layers. Such material may also contain desiccants to further remove water and/or oxygen.
Abstract:
The present invention relates to a process for manufacturing composite structures formed by two subcomponents of the same material, characterized in that it comprises the following steps: providing a first subcomponent (13), particularly a skin; providing a tool (15) made of a composite and precured for the manufacture of the second subcomponent (17), particularly a stiffener; positioning said tool (15) on said first subcomponent (13); applying preimpregnated composite (21) on said tool (15) so as to form the second subcomponent (17); consolidating the composite structure by means of a process of curing the assembly resulting from the previous steps under suitable pressure and/or temperature conditions.
Abstract:
A process for producing an upholstered article in a bladder mold. A cover sheet with adhesive is positioned over the opened bladder mold. A foam core is inserted into the bladder mold, carrying the cover sheet into engagement with the bladder. The bladder mold is then closed so that the bladder wraps the marginal portion of the cover sheet around the foam core. After the adhesive cures to bond the cover sheet to the foam core, the mold is opened; and the article is removed.