Abstract:
A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.
Abstract:
An electron microscope for measuring a dimension of a feature of a specimen includes a focusing lens for focusing an electron beam onto the specimen and a supplying circuit for supplying an exciting current supplied to the focusing lens. A control circuit controls the supplying circuit to vary the exciting current which is supplied to the focusing lens and obtains dimension data of a feature of the specimen at each of the exciting currents which is supplied to the focusing lens. An actual dimension of the feature is determined based on the obtained dimension data. Further, a profile of the feature may be determined based on the changes observed in the dimension data.
Abstract:
An optical storage apparatus, using the near field optical effect, performs tracking along a track of a recording medium to reproduce information recorded on the recording medium without error. The optical storage apparatus includes a first probe to read information recorded on the recording medium and at least two to judge if the track direction of the recording medium is in accordance with the information scanning direction of the first probe. The apparatus also includes a probe actuator to adjust the tracking direction of the first and second probes using a tracking control signal, and a number of sensors to sense the intensity of radiation probed by the first and second probes and to generate tracking signals corresponding to the sensed radiation. The apparatus also includes a controller to generate a tracking control signal using the tracking signals, and to provide the tracking control signal to the probe actuator.
Abstract:
The probe tip of a scanning probe microscope is scanned either along an X- or Y-direction of the apparatus, or along a scan line forming an acute angle with both the X- and Y-directions. During scanning, an excitation vibration is applied in the Z-direction, perpendicular to the surface of the sample being scanned. In a first mode of operation, a dithering vibration is applied to the probe tip, along the scan line. In a second mode of operation, the probe tip is dithered in a circular motion, which is used to identify the direction in which a wall extends along the sample surface. Alternately, in a third mode of operation, the probe tip is dithered in X- and Y-directions at differing vibrational frequencies to identify this direction of a wall. When this direction is identified, the probe proceeds straight up or down the wall to obtain an accurate profile thereof.
Abstract:
Heights of a sample are calibrated by setting a calibrating substrate on a stage and then irradiating a charged particle beam onto standard marks provided on at least two kinds of surfaces having different substrate heights. Secondary charged particles produced from said irradiated standard marks on the substrate are and detected and a surface height of the irradiated portion of the substrate measured. The difference in height between the standard marks is set to be in a range containing an extent, over the entire sample, to which the height of the sample varies due to warping.
Abstract:
Disclosed is an observation apparatus and method using an electron beam, capable of measuring stress and strain information on a crystal structure in a specimen using electron beam diffraction images. A method according to the invention includes mounting a specimen on a specimen stage; irradiating a predetermined area in the specimen with an electron beam while scanning the electron beam, and acquiring an enlarged image of a specimen internal structure in the predetermined area; irradiating a specific portion included in the predetermined area and acquiring a diffraction image showing the crystal structure in the specimen; extracting information on the crystal structure in the specimen; displaying the information of the crystal structure in the specimen so as to be superimposed on the acquired enlarged image. The observation method according to the invention can obtain information on the crystal structure in a specimen with a high degree of sensitivity and with a high level of resolution.
Abstract:
There is provided a probe for a scanning probe microscope, comprising: a proximal end; and a distal tip portion, wherein the distal tip portion has a tip surface which faces a fixed sample, and at least one monolayer is formed at least on the tip surface, and a molecule having a chemical sensor function or catalytic function is placed in or on an outermost monolayer above the tip surface. There is provided a probe for a scanning probe microscope, comprising: a cover layer containing an electrically conductive polymer; and a catalyst in the cover layer, the catalyst being selected from a group consisting of inorganic catalysts and organic catalysts. There are provided a scanning probe microscope equipped with the above probe, and a molecule processing method using such a scanning probe microscope.
Abstract:
A beam directing method and device are presented for spatially separating between a primary charged particle beam and a beam of secondary particles returned from a sample as a result of its interaction with the primary charged particle beam. The primary charged particle beam is directed towards the beam directing device along a first axis passing an opening in a detector, which has charged particle detecting regions outside this opening. The trajectory of the primary charged particle beam is then affected to cause the primary charged particle beam propagation to the sample along a second axis substantially parallel to and spaced-apart from the first axis. This causes the secondary charged particle beam propagation to the detecting region outside the opening in the detector.
Abstract:
A method of diagnosing a parameter of a scanning electron microscope such as magnification, linearity and stability, includes loading a reference material into a microscope, setting a permissible limit of a value of the parameters, inputting a pitch of the reference material, inputting a magnification of the microscope, acquiring a set of digital images on the reference material, analyzing the digital image line after line with determination of a pitch of features of the image in each line, in mutually orthogonal directions, checking if all lines of the digital image has been analyzed, determining a mean value of the pitch of the features in each orthogonal direction, comparing the obtained value of the pitch of the image with a known value of the pitch of the reference material to determine a ratio indicative of a modification, and determining a precision of the measurements of the pitch by statistical analysis of the pitch measurements.
Abstract:
A charged particle beam method and apparatus use a primary electron beam to irradiate a specimen so as to induce the specimen to emit secondary and backscattered electrons carrying information about topographic and material structure of the specimen, respectively. The specimen may be an article to be inspected. The electrons emitted by the specimen are deflected in the electric field of an electron mirror and detected using an electron detector of the apparatus. The electron mirror permits the detection of the secondary electrons traveling close to the optical axis of the apparatus and corrects the aberrations of the secondary electrons. In addition, the electron mirror accelerates the electrons improving the detection efficiency of the electron detector and enhancing the time-of-flight dispersion characteristics of the secondary electron collection. A second electron mirror can be provided to further control the direction of the electron's landing on the surface of the electron detector.