摘要:
A method of indexing an electron diffraction pattern comprises obtaining a number of experimental electron diffraction patterns at a low resolution from a sample of material using a detector. A master simulation dataset is loaded into the primary memory of a computer system for each phase of the sample material. A simulated template is generated at the low resolution in the primary memory of the computer by using the master simulation dataset from the primary memory wherein the simulated template represents a simulated electron diffraction pattern for a nominal crystallographic orientation. The simulated template is compared with the experimental electron diffraction pattern so as to generate a corresponding similarity measure which is stored. The process is repeated for all crystallographic orientations using crystallographic orientation intervals, and for each phase and each location on the sample. The similarity measures stored in step f are then analysed so as to select at least one resultant indexed phase and orientation for each location. A system configured to perform the method is also provided.
摘要:
A scanning transmission electron microscope is adapted to acquire high quality precession electron diffraction (PED) patterns by means of separated scanning deflectors and precession deflectors. Magnetic or electrostatic deflectors may be used for scanning and for precession. This enables independent optimization of parameters for each deflection system to achieve a broad operating range simultaneously for both deflection systems.
摘要:
A process for measuring strain is provided that includes placing a sample of a material into a TEM as a sample. The TEM is energized to create a small electron beam with an incident angle to the sample. Electrical signals are generated that control multiple beam deflection coils and image deflection coils of the TEM. The beam deflection control signals cause the angle of the incident beam to change in a cyclic time-dependent manner. A first diffraction pattern from the sample material that shows dynamical diffraction effects is observed and then one or more of the beam deflection coil control signals are adjusted to reduce the dynamical diffraction effects. One or more of the image deflection coil control signals are then adjusted to remove any motion of the diffraction pattern. A diffraction pattern is then collected from a strained area of the material after the adjusting step, and the strain is then determined from a numerical analysis of the strained diffraction pattern compared to a reference diffraction pattern from an unstained area of the material.
摘要:
A crystal material lattice strain evaluation method includes illuminating a sample having a crystal structure with an electron beam in a zone axis direction, and selectively detecting a certain diffracted wave diffracted in a certain direction among a plurality of diffracted waves diffracted by the sample. The method further includes repeating the illuminating step and the selectively detecting step while scanning the sample, and obtaining a strain distribution image in a direction corresponding to the certain diffracted wave from diffraction intensity at each point of the sample.
摘要:
A crystal material lattice strain evaluation method includes illuminating a sample having a crystal structure with an electron beam in a zone axis direction, and selectively detecting a certain diffracted wave diffracted in a certain direction among a plurality of diffracted waves diffracted by the sample. The method further includes repeating the illuminating step and the selectively detecting step while scanning the sample, and obtaining a strain distribution image in a direction corresponding to the certain diffracted wave from diffraction intensity at each point of the sample.
摘要:
A method of imaging using an electron beam. An incident electron beam is focused onto the specimen surface, a scattered electron beam is extracted from the specimen surface, and a plurality of dark field signals are detected using a detection system. An interpolated dark field signal is generated using the plurality of dark field signals. In addition, a bright field signal may be detected using the detection system, and a final interpolated signal may be generated using the interpolated dark field signal and the bright field signal. User input may be received which determines a degree of interpolation between two adjacent dark field signals so as to generate the interpolated dark field signal and which determines an amount of interpolation between the interpolated dark field signal and the bright field signal so as to generate a final interpolated signal. Other embodiments, aspects and features are also disclosed.
摘要:
A high-energy electron diffraction apparatus in which its electron beam source includes a field emission type electron emitter and a final lens stop or diaphragm is disposed between an objective lens and a specimen. A region of environment of the electron beam that extends from the electron beam source to an objective lens stop or diaphragm is held to a high vacuum, and a region of environment of the electron beam that extends from the objective lens stop or diaphragm to the final lens stop or diaphragm is held to a medium vacuum. A beam axial alignment electrode assembly is disposed between the objective lens stop or diaphragm and the final lens stop or diaphragm. There are also disposed an astigmatic correction electrode assembly and a scan deflection electrode assembly between the final lens stop or diaphragm and the specimen. A screen is spaced away from the specimen at a distance of 50 mm or less.
摘要:
A scanning reflection electron diffraction microscope causes a primary electron beam from its electron gun to be reflectively diffracted from a sample and a diffraction pattern to be formed on a fluorescent screen. An optical lens reduces this diffraction pattern in size and forms its reduced image on a photoelectric surface, thereby producing an image-carrying electron beam. Deflected by a deflecting system including a deflecting coil and a condenser coil, the image-carrying electron beam is detected by an electron-multiplier such that a diffraction pattern is displayed on a cathode ray tube.
摘要:
A low energy electron diffraction (LEED) detection module (100) includes: a first vacuum chamber for receiving diffracted electrons from a specimen (109); a larger second vacuum chamber connected to the first vacuum chamber to receive the diffracted electrons that have been transported through the first vacuum chamber; a two-dimensional electron detector disposed in the second vacuum chamber to detect the diffracted electrons; a potential shield (106) disposed generally along an inner surface of the first vacuum chamber and an inner surface of the second vacuum chamber; a magnetic lens (105) to expand a beam of the diffracted electrons that have been transported through the first vacuum chamber towards the two-dimensional electron detector; and a generally plane-shaped energy filter (103) to repel electrons having an energy lower than the probe beam (203) of electrons that impinges on the specimen (109).
摘要:
A process for measuring strain is provided that includes placing a sample of a material into a TEM as a sample. The TEM is energized to create a small electron beam with an incident angle to the sample. Electrical signals are generated that control multiple beam deflection coils and image deflection coils of the TEM. The beam deflection control signals cause the angle of the incident beam to change in a cyclic time-dependent manner. A first diffraction pattern from the sample material that shows dynamical diffraction effects is observed and then one or more of the beam deflection coil control signals are adjusted to reduce the dynamical diffraction effects. One or more of the image deflection coil control signals are then adjusted to remove any motion of the diffraction pattern. A diffraction pattern is then collected from a strained area of the material after the adjusting step, and the strain is then determined from a numerical analysis of the strained diffraction pattern compared to a reference diffraction pattern from an unstained area of the material.