Abstract:
Disclosed are a method for inducing a prediction motion vector and an apparatus using the same. An image decoding method can include: a step of determining the information related to a plurality of spatial candidate prediction motion vectors from peripheral predicted blocks of a predicted target block; and a step of determining the information related to temporal candidate prediction motion vectors on the basis of the information related to the plurality of spatial candidate prediction motion vectors. Accordingly, the present invention can reduce complexity and can enhance coding efficiency when inducing the optimum prediction motion vector.
Abstract:
An image decoding method, according to the present invention, includes the steps of: deriving an MPM candidate mode from neighboring blocks adjacent to a target block to be decoded; generating an MPM list using the MPM candidate mode derived from the neighboring blocks; and deriving an intra prediction mode for the target block to be decoded using the generated MPM list. According to the present invention, image compression efficiency can be improved.
Abstract:
An image encoding method and apparatus and an image decoding method and apparatus are provided. The image encoding method and image decoding method may enhance performance of the image encoding apparatus and performance of the image decoding apparatus by adaptively applying a tile-based parallel encoding scheme, a frame-based parallel encoding scheme, and an instantaneous decoding refresh (IDR) period-based parallel encoding scheme.
Abstract:
Disclosed is a video stream processing method and apparatus that may identify a target picture to be edited among a I-picture and at least one B-picture subsequent to the I-picture, the I-picture and the at least one B-picture constituting a group of pictures (GOP) included in a video stream, and process the target picture, wherein pictures included in the video stream may be decoded in a playback order.
Abstract:
According to the present invention, an image encoding/decoding method comprises the steps of: performing an intra prediction on a current block so as to generate a prediction block; performing filtering on a filtering target pixel in the prediction block on the basis of the intra prediction mode of the current block so as to generate a final prediction block; and generating a reconstructed block on the basis of a reconstructed differential block corresponding to the current block and on the final prediction block. According to the present invention, image encoding/decoding efficiency can be improved.
Abstract:
Provided is a video encoding apparatus, including a signal separator to separate a differential image block into a first domain and a second domain, based on a boundary line included in the differential image block, the differential image block indicating a difference between an original image and a prediction image with respect to the original image, a transform encoder to perform a transform encoding with respect to the first domain using a discrete cosine transform (DCT), a quantization unit to quantize an output of the transform encoding unit in a frequency domain, a space domain quantization unit to quantize the second domain in a space domain, and an entropy encoder to perform an entropy encoding using outputs of the quantization unit and the space domain quantization unit.
Abstract:
An inter prediction method according to the present invention comprises the steps of: selecting candidate units from among reconstructed neighbor units; creating a candidate unit set with respect to units to be decoded, using the selected candidate units; determining a reference unit from among the candidate units which constitute the created candidate unit set; and performing inter prediction on the units to be decoded, using the determined reference unit. According to the present invention, image encoding/decoding efficiency can be improved.
Abstract:
A method of processing a super resolution image using adaptive preprocessing filtering and/or postprocessing filtering is provided. A provided image processing apparatus may determine a preprocessing filter and a postprocessing filter based on frames included in a reference interval among a plurality of intervals in an input video, may perform filtering on the frames in the reference interval based on the preprocessing filter, may reconstruct a high frequency signal of each of the frames on which the filtering is performed, and may perform filtering on the frames, each having the reconstructed high frequency signal, based on the postprocessing filter.
Abstract:
Provided are a method and apparatus for encoding and decoding images based on constrained offset compensation and a loop filter. The image decoding apparatus: receives, from an encoder, a first indicator indicating whether a sequence, a picture, a frame, a slice, a coding unit (CU), a prediction unit (PU), and/or a transform unit (TU) supports constrained offset compensation; receives, from the encoder, a second indicator indicating whether constrained sample adaptive offset (SAO) compensation or an adaptive loop filter (ALF) is applied; receives a parameter from the encoder; and applies the SAO compensation or the ALF to pixels of a restored image on the basis of the second indicator and the parameter.
Abstract:
A method for decoding an image according to the present invention comprises the steps of: restoring a residual block by performing inverse quantization and inverse transformation for the entropy-decoded residual block; generating a prediction block by performing intra prediction for a current block; and restoring an image by adding the restored residual block to the prediction block, wherein the step of generating the prediction block further comprises a step for generating a final prediction value of a pixel to be predicted, on the basis of a first prediction value of the pixel to be predicted, which is included in the current block, and of a final correction value that is calculated by performing an arithmetic right shift by a binary digit 1 for a two's complement integer representation with respect to an initial correction value of the pixel to be predicted. Thus, the operational complexity during image encoding/decoding can be reduced.