Abstract:
A method of making a lithographic printing plate includes the steps of: providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which includes hydrophobic thermoplastic polymer particles; exposing the coating to heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; and developing the precursor by applying a gum solution to the coating, thereby removing non-exposed areas of the coating from the support. According to the above method, the plate precursor can be developed and gummed in a single step.
Abstract:
A lithographic printing plate precursor capable of forming an image without undergoing alkali development, which comprises a hydrophilic support and a laser-sensitive photopolymerizing layer, wherein the photopolymerizing layer contains a polymer compound having at least one of an ether group, an ester group and an amido group in its molecule, particularly, in its side chain.
Abstract:
A photosensitive planographic printing plate comprising a substrate and a photosensitive layer including a photopolymerizable compound, wherein the photosensitive layer and the substrate are provided between them with an undercoat layer including a (co)polymer having structural units having ethylenically unsaturated groups bonded with silicon atoms and phosphonic acid groups.
Abstract:
A lithographic printing process comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and an image-forming layer containing an infrared absorbing agent, a polymerization initiator and a binder polymer to polymerize the polymerizable compound within the exposed area; removing the image-forming layer within the unexposed area while mounting the lithographic plate on a cylinder of a printing press; and then printing with the lithographic plate while mounting the lithographic plate on the cylinder of the printing press. The polymerization initiator is a salt of an anion with a sulfonium ion. According to the present invention, a specific anion or a specific sulfonium ion is used in the polymerization initiator.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I): Z−M+ General formula (I) wherein Z− represents COCOO−, COO−, SO3−, or SO2—N−—R where R represents a monovalent organic group and M+ represents an onium cation. The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer.
Abstract translation:本发明提供一种聚合性组合物,其含有(A)包含聚合性不饱和基团的化合物和(B)高分子化合物,其侧链具有下述通式(I)所示的结构: -formulae description =“在线公式”end =“lead”?> Z - SUP> M + SUPER +通用公式(I)<?in-line-formula description =“ 其中Z 0表示COCOO,SO 3,SO 3,SO 3, 或其中R代表一价有机基团,并且M + 代表鎓阳离子。 本发明还提供了响应于红外激光器的负型平版印刷版前体,其前体具有优异的记录灵敏度和印刷耐久性,并且使用可聚合化合物作为记录层。
Abstract:
A lithographic printing plate precursor includes an image-recording layer which is capable of being removed with at least one of printing ink and dampening water and contains a compound represented by the following formula (I), a sensitizing dye and a compound having at least one addition-polymerizable ethylenically unsaturated bond: wherein R1 represents a monovalent substituent, R2, R3, R4, R5 and R6 each independently represents a hydrogen atom, a halogen atom or a monovalent substituent, and X− represents an anion.
Abstract:
A planographic printing plate precursor includes a support having disposed thereon a recording layer containing a water-insoluble and alkali-soluble resin, a development inhibitor and an infrared absorber and exhibiting enhanced solubility in an aqueous alkali solution through light exposure. The recording layer may have either a mono-layer construction or a multi-layer construction containing a lower layer and an upper layer. In the case of the multi-layer construction, a layer containing the water-insoluble and alkali-soluble resin is used as the lower layer, and a layer containing the water-insoluble and alkali-soluble resin and the development inhibitor and exhibiting enhanced solubility in an aqueous alkali solution through light exposure is used as the upper layer, and at least one of the lower layer and the upper layer contains the infrared absorber.
Abstract:
Printing members that include a plasma polymer layer exhibit enhanced tolerance for high imaging-power densities. The plasma polymer layer may contain or be adjacent to an oleophilic metal such as copper.
Abstract:
A method of making a lithographic printing plate includes the steps of: providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which includes hydrophobic thermoplastic polymer particles; exposing the coating to heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; and developing the precursor by applying a gum solution to the coating, thereby removing non-exposed areas of the coating from the support. According to the above method, the plate precursor can be developed and gummed in a single step.
Abstract:
Provided is an image recording material capable of being directly recorded by various kinds of lasers, excellent in alkali-developability by alkaline developer and capable of forming an image which is good in curability by exposure. The image recording material is characterized by including on a support: an image recording layer containing a binder polymer (A); a compound (B) having a polymerizable unsaturated group, and a polymerization initiator (C); and a layer containing an organic ionic polymer (a) formed of a non-metallic element and an inorganic layered compound (b) that are layered in this order. It is preferable that the image recording layer further contains a dye (D) having an absorption maximum in a region of 300 to 1,200 nm, and it is preferable that the binder polymer (A) is a polymer having an alkali-soluble group.