Abstract:
A mobile radio communication apparatus includes a first housing, a second housing, a hinge part that foldably connects the second housing to the first housing, a one touch opening mechanism that is provided to the hinge part, and automatically opens the second housing from a folded state to an angle between 160° and 170° relative to the first housing in a non-stop motion, a damper mechanism that is provided to the hinge part and brakes an opening action of the second housing by the one touch opening mechanism, the damper mechanism including a damper having a rotational shaft that generates a braking power and a damper bush having a fixed shaft connected to the rotational shaft, and a flexible printed circuit that is twisted around the rotational or fixed shaft of the damper mechanism, and electrically connects the first and second housings to each other.
Abstract:
It is an object of the present invention to provide a rotary damper capable of automatically adjusting an exhibited braking force in correspondence with variation in load. A fluid chamber 2 into which viscous fluid is charged is formed in a casing 1. A vane 3 is disposed in the fluid chamber 2. The vane 3 is formed with a fluid passage 5, and is provided with a valve 6. The valve 6 automatically varies a flow rate of the viscous fluid passing through the fluid passage 5 in correspondence with variation in load. With this structure, it is possible to automatically adjust the exhibited braking force in correspondence with variation in load caused by variation in rotational motion of a subject to be controlled, and to reduce variation in rotation speed of the subject to be controlled to an extremely small value.
Abstract:
It is an object of the present invention to provide a rotary damper capable of automatically adjusting an exhibited braking force in correspondence with variation in load. A fluid chamber 2 into which viscous fluid is charged is formed in a casing 1. A vane 3 is disposed in the fluid chamber 2. The vane 3 is formed with a fluid passage 5, and is provided with a valve 6. The valve 6 automatically varies a flow rate of the viscous fluid passing through the fluid passage 5 in correspondence with variation in load. With this structure, it is possible to automatically adjust the exhibited braking force in correspondence with variation in load caused by variation in rotational motion of a subject to be controlled, and to reduce variation in rotation speed of the subject to be controlled to an extremely small value.
Abstract:
The movement of a hinge, preferably for furniture, comprising a hinge arm or a fixed-body hinge section and a pivotable hinge section flexibly connected thereto, is damped by a rotation damper at least damped over part of the closure path to the closed position. In order that the hinge can be manufactured at reduced cost, the rotation damper is an axial damper whose axis forms a hinge axis of the hinge and whose cylinder is fixedly connected to the hinge section which is pivotably supported on the axis.
Abstract:
An embodiment of the apparatus relates to a door opening and closing assisting device comprising: a spring force to urge the door in a closed direction when the door is half-opened or less and supplies no closing force when the door is more than half-opened. The assisting device is housed either in the door or the main body. The method relates to assisting in opening and closing a door comprising: elastically deforming a spring in response to the door being opened to a half-opened position; disconnecting the spring force if the door is more than half-opened and reconnecting the spring force to the door when the door is half-opened or less.
Abstract:
A damper device includes a housing; a viscous fluid filled inside the housing; a rotor rotatably disposed inside the housing; and a sealing member for preventing the viscous fluid from leaking through the rotor and the housing. A rotational wing with a viscous-fluid passage is provided on one of the housing and the rotor. The rotational wing moves relative to the viscous fluid in a circumferential direction, and extends in a radial direction for dividing a housing portion of the housing filled with the viscous fluid. A valve is provided on the rotational wing, and is formed of an elastic member capable of deforming elastically. The valve opens the viscous-fluid passage when the rotor rotates in one direction, and blocks the viscous-fluid passage when the rotor rotates in the other direction.
Abstract:
A monitor adjusting apparatus include a monitor (10), a base (20) and an adjusting device (30). The adjusting device includes a first pivot assembly (40) connected with the monitor, a second pivot assembly (50) connected with the base, and a connecting assembly (70) mounted between the first pivot assembly and the second pivot assembly. The first pivot assembly generates a friction moment. The monitor generates a first gravity moment opposite to the friction moment. The second pivot assembly generates a twist moment. The monitor and the connecting assembly generate a second gravity moment opposite to the twist moment. The monitor stays at any obliquity under a balance of the friction moment and the first gravity moment, and stays at any height under a balance of the twist moment and the second gravity moment.
Abstract:
The invention concerns a cabinet fitting, in particular a hinge, with integrated braking and damping device, including a fastenable hinge arm on a cabinet component and a fastenable hinge cup on another movable cabinet component that is connected by at least one articulated lever with the hinge arm. The invention is characterized by the driver plate, which can slide, is held in the hinge cup and can be operated directly or indirectly by the articulated lever and has held in the hinge cup at least one pivoting or swiveling brake plate moves turning, so that the brake plate has at least one brake surface that glides on at least one corresponding, fixed brake surface or, on one opposite the first brake surface, a second movable brake surface.
Abstract:
A rotary damper device includes a case in which a viscous fluid is filled and sealed, a rotation shaft relatively rotatably supported by the case, a rotation vane formed protruded from the rotation shaft, and a check valve mounted on a tip part of the rotation vane. A passage where the viscous fluid passes through is formed in the rotation vane. The check valve is provided with an opposing face part facing the passage and a frame body interposing the rotation vane. An elastic member for energizing the opposing face part of the check valve for closing the passage of the rotation vane is formed in either the rotation vane or the opposite side of the frame body of the opposing face part.
Abstract:
A damper unit includes a gear having a core member projecting at a shaft core portion thereof and rotatably housed in a case, a string wound around the core member, a rotary damper engaging the gear for damping a rotational force of the gear, and a spring. One end of the spring is fixed to the case and the other end thereof is fixed to the core member so that an elastic force is accumulated when the string is pulled out.