Abstract:
Methods and systems are provided for an engine. A condition of the engine may be diagnosed based on information provided by signals from speed sensors associated with the engine and/or other signals associated with a generator operationally connected to the engine. Different types of degradation may be distinguished based on discerning characteristics within the information. Thus, a degraded engine component may be identified in a manner that reduces service induced delay.
Abstract:
The subject disclosure is directed towards a technology by which antimalware detection logic is maintained and operated at a backend service, with which a customer frontend machine communicates (queries) for purposes of malware detection. In this way, some antimalware techniques are maintained at the backend service rather than revealed to antimalware authors. The backend antimalware detection logic may be based upon feature selection, and may be updated rapidly, in a manner that is faster than malware authors can track. Noise may be added to the results to make it difficult for malware authors to deduce the logic behind the results. The backend may return results indicating malware or not malware, or return inconclusive results. The backend service may also detect probing-related queries that are part of an attempt to deduce the unrevealed antimalware detection logic, with noisy results returned in response and/or other actions taken to foil the attempt.
Abstract:
The subject disclosure is directed towards detecting malware or possible malware in an input file by allowing the input file to be opened, and by monitoring for one or more behaviors corresponding to the open file that likely indicate malware. Only certain executable files and/or file types opened thereby may be monitored, with various collected event data used for antimalware purposes when improper behavior is observed. Example behaviors include writing of a file to storage, generation of network traffic, injection of a process, running of script, and/or writing system registry data. Telemetry data and/or a sample of the file may be sent to an antimalware service, and malware remediation may be performed. Data (e.g., the collected events) may be distributed to other nodes for use in antimalware detection, e.g., to block execution of a similar file.
Abstract:
An apparatus for controlling a remote camera is described. The apparatus includes a housing and a processor positioned within the housing. A transceiver coupled to the processor communicates with a remote server. The remote server is coupled to the remote camera. A motion tracking component is mechanically coupled to the housing and electrically coupled to the processor. The motion tracking component generates a motion signal. The remote server controls a parameter of the remote camera in response to the motion signal. A display is coupled to the processor for displaying the output signal from the remote camera. The output signal is associated with the parameter of the remote camera.
Abstract:
A railroad locomotive includes a naturally-aspirated reciprocating internal combustion engine, and a traction generator driven by the engine. A throttle position sensor produces a signal corresponding to the throttle position selected by the locomotive's operator. A load regulator receives a speed signal derived from the throttle position signal and outputs an excitation signal for the traction generator which is modified by a controller in response to air availability so that engine speed and load are controlled independently of the selected throttle position, so as to limit the exhaust smoke output of the engine.
Abstract:
A method is provided for controlling a drivetrain of a vehicle which includes a prime mover operatively connected to at least one tractive element. The method includes: (a) determining the vehicle's total weight; and (b) using an electronic controller carried by the vehicle, causing the prime mover to apply power to the tractive element so as to propel the vehicle, the magnitude of the power being a function of the vehicle's total weight.
Abstract:
Techniques for controlling collection of diagnostic data in a monitored system. A set of flood control rules are configured for the monitored system for controlling the gathering of diagnostic data in the monitored system. The set of flood control rules may include one or more default flood control rules. The set of flood control rules are user-configurable enabling the user of the monitored system to set policies for dynamically controlling gathering of diagnostic data for the monitored system. In one embodiment, diagnostic data gathering is controlled based upon a number of previous occurrences of a condition in some predefined or user-configured time frame that triggers diagnostic data gathering and/or a number of previous executions of an action performed in some predefined or user-configured time frame responsive to the condition in the monitored system.
Abstract:
A device and method of encrypting a sequence. The method (300) encrypts data (Di) over a sequence of encryption periods (Ti) by generating (315) a sequence of forward encryption keys (GKfi) each associated with a respective encryption period (Ti). Each forward encryption key is generated recursively by applying a forward one way function (FFi−1) to the forward encryption key (GKFi−1) associated with the preceding encryption period (Ti−1). Next the method (300) generates (320) a sequence of reverse encryption keys (GKRi), each associated with a respective encryption period (Ti), each reverse encryption key being generated recursively by applying a reverse one way function (FRi−1) to the reverse encryption key (GKRi+1) associated with the subsequent encryption period (Ti+1). Encrypting (325) the data (Di) for each encryption period (Ti) with a respective forward encryption key (GKFi) and a respective reverse encryption key (GKFi) is then performed.
Abstract:
A railroad locomotive includes a naturally aspirated reciprocating internal combustion engine driving a traction generator. A speed control system and load regulator provide an output signal which is operated upon and modified by a controller in response to the barometric pressure at which the locomotive is being operated.
Abstract:
A method and system for detecting impairment of a turbocharger installed as part of an internal combustion engine includes turbo speed monitoring for determining a rotational speed of a turbocharger and airflow sensing for determining airflow rate through the engine. A controller compares the sensed rotational speed of the turbo with a turbo speed threshold and compares the sensed airflow rate with an airflow threshold. A turbocharger impairment flag is set in the event that both the sensed speed of the turbo is less than the turbo speed threshold and the sensed airflow is less than the airflow threshold.