Abstract:
Disclosed are an alkyl(meth)acrylate-based thermoplastic resin composition and a thermoplastic resin with modified scratch resistance and yellowness. The alkyl(meth)acrylate-based thermoplastic resin composition provides improved scratch resistance and low yellowness index while maintaining transparency, flowability, and impact strength, even when the total content of the vinyl cyan-based monomer contained in the resin composition is reduced to a level unattainable by conventional techniques, and the content of the alkyl(meth)acrylate-based monomer is increased.
Abstract:
Provided are a resin composition including an acryl-based copolymer resin including an alkyl(meth)acrylate-based monomer and an imide-based monomer, additionally copolymerizable with a styrene-based monomer, and a polycarbonate-based resin having a melt index (MI) of 30 g/10 min or more under conditions of a load of 1.2 kg and a temperature of 300° C., a polarizer protective film including the resin composition, and a liquid crystal display including the polarizer protective film. The polarizer protective film according to the present invention has excellent heat resistance, transparency, and optical properties.
Abstract:
The present invention relates to an acrylic copolymer resin containing: 1) an alklyl (meth)acrylate-based monomer; 2) a (meth)acrylate-based monomer containing an aliphatic ring and/or an aromatic ring; and 3) at least an imide-based monomer or a styrene-based monomer, to a resin composition containing said acrylic copolymer resin and a resin containing an aromatic ring and/or an aliphatic ring in the main chain thereof, to an optical film comprising said resin composition, and to a liquid crystal display device comprising said optical film. The optical film according to the present invention has excellent heat resistance, optical transparency, etc.
Abstract:
Disclosed are an image sensor and a method for manufacturing the same. The image sensor includes readout circuitry and an inter-layer dielectric layer on a first substrate, a metal line in the inter-layer dielectric layer and electrically connected with the readout circuitry, a plurality of contact plugs on the metal line, and an image sensing device on the contact plugs. The image sensing device is electrically connected to the metal line through the plurality of contact plugs. The method for manufacturing an image sensor includes forming a readout circuitry on a first substrate, forming an inter-layer dielectric layer on the first substrate, forming a metal line in the inter-layer dielectric layer such that the metal line is electrically connected with the readout circuitry, forming a plurality of contact plugs on the metal line per unit pixel, and forming an image sensing device on the plurality of contact plugs.
Abstract:
An image sensor includes readout circuitry on a first substrate, a metal line electrically connected with the readout circuitry, a dielectric on the metal line, an image sensing device on the dielectric, including first and second conductivity type layers, a contact plug in a via hole penetrating the image sensing device to connect the first conductivity type layer with the metal line, and a sidewall dielectric in the via hole at a sidewall of the second conductivity type layer.
Abstract:
An image sensor may include a first substrate having circuitry including wires and a silicon layer formed on and/or over the first substrate to selectively contact the wires. The image sensor may include photodiodes bonded to the first substrate while contacting the silicon layer and electrically connected to the wires. Each unit pixel may be implemented having complicated circuitry without a reduction in photosensitivity. Additional on-chip circuitry may also be implanted in the design.
Abstract:
Disclosed are a CMOS image sensor and a manufacturing method thereof. The method includes the steps of: forming an isolation layer on a semiconductor substrate, defining an active region that includes a photo diode region and a transistor region; forming a gate in the transistor region, the gate including a gate electrode and a gate insulating layer; forming a first low-concentration diffusion region in the photo diode region; forming a second low-concentration diffusion region in the transistor region; forming a buffer layer over the substrate, the buffer layer covering the photo diode region; forming first and second insulating layers over the entire surface of the substrate, the first and second insulating layer having a different etching selectivity from each other; forming an insulating sidewall on sides of the gate electrode by selective removal of the second insulating layer; removing the first insulating layer from the transistor region; forming a high-concentration diffusion region in the exposed transistor region, partially overlapping the second low-concentration diffusion region; and forming a metal silicide layer on the high-concentration diffusion region.
Abstract:
Provided are an image sensor and a method for manufacturing the same. The image sensor comprises a readout circuitry, an electrical junction region, a poly contact, an interconnection, and an image sensing device. The readout circuitry is formed on a first substrate. The electrical junction region is formed in the first substrate. The electrical junction region is electrically connected to the readout circuitry. The poly contact is formed on the electrical junction region. The interconnection is formed on the poly contact. The image sensing device is formed on the interconnection. The image sensing device is electrically connected to the readout circuitry through the interconnection, the poly contact, and the electrical junction region.
Abstract:
Disclosed are an image sensor and a method for manufacturing the same. The image sensor includes readout circuitry and an inter-layer dielectric layer on a first substrate, a metal line in the inter-layer dielectric layer and electrically connected with the readout circuitry, a plurality of contact plugs on the metal line, and an image sensing device on the contact plugs. The image sensing device is electrically connected to the metal line through the plurality of contact plugs. The method for manufacturing an image sensor includes forming a readout circuitry on a first substrate, forming an inter-layer dielectric layer on the first substrate, forming a metal line in the inter-layer dielectric layer such that the metal line is electrically connected with the readout circuitry, forming a plurality of contact plugs on the metal line per unit pixel, and forming an image sensing device on the plurality of contact plugs.
Abstract:
An image sensor includes readout circuitry on a first substrate, a metal line electrically connected with the readout circuitry, a dielectric on the metal line, an image sensing device on the dielectric, including first and second conductivity type layers, a contact plug in a via hole penetrating the image sensing device to connect the first conductivity type layer with the metal line, and a sidewall dielectric in the via hole at a sidewall of the second conductivity type layer.