Abstract:
A method for one-way coupling an input signal to an integrated circuit on a semiconductor chip with the integrated circuit electrically isolated from the input signal comprises forming a MOS isolation coupler on the semiconductor chip by a CMOS process. The MOS isolation coupler comprises an inductor coil for generating a magnetic field in response to an input signal applied to terminals thereof. A MAGFET having a split drain formed by respective drain portions is formed on the semiconductor chip below the inductor coil, so that a current difference is induced between the drain currents in the drain portions which is proportional to the strength of the magnetic field generated by the inductor coil resulting from the input signal. The MAGFET is formed prior to the inductor coil. An oxide isolating layer is provided over the MAGFET, and the inductor coil is formed on the oxide layer. The depth of the oxide layer is sufficient for providing the desired amount of electrical isolation, while at the same time locating the inductor coil sufficiently close to the MAGFET so that the magnetic field generated by the inductor coil, extending axially through the inductor coil cuts the channel of the MAGFET substantially perpendicularly.
Abstract:
A sigma-delta digital-to-analog converter comprises a current digital-to-analog converter (IDAC) stage which generates a current depending on an input digital signal. An output current-to-voltage converter converts the generated signal to a voltage on a continuous-time basis. The amplifier used in the output current-to-voltage converter is chopper-stabilized. The converter can be single bit or multi-bit. The IDAC stage can be implemented with a pair of branches, a first branch comprising a first biasing current source and a second branch comprising a second biasing current source. The biasing current sources can be chopper-stabilized by connecting the bias current sources to the output current-to-voltage converter by a set of switches. The switches connect the biasing current sources to the output current-to-voltage converter in a first configuration and a second, reversed, configuration. This modulates flicker noise contributed by the bias current sources to the chopping frequency. from where it can be removed by filtering downstream of the current-to-voltage converter.
Abstract:
A gain compensation technique for a fractional-N phase lock loop includes locking a reference signal with the N divider feedback signal in a phase lock loop including a phase detector, charge pump, loop filter and voltage control oscillator with an N divider in its feedback loop; driving the N divider with a sigma delta modulator including at least one integrator to obtain a predetermined fractional-N feedback signal; and commanding a scaling in phase lock loop gain by a predetermined factor and synchronously inversely scaling by that factor the contents of at least one of the integrators.
Abstract:
Digital to Analog convertors (DAC's) are prone to mismatch noise, particularly in DAC structures using unequally weighted segments. A digital to analog converter, for use in a data conversion system, for converting a digital input to analog output and having features for reducing mismatch noise comprises a plurality of selectable segments, at least two of which have a first weighting factor and at least two of which have a second weighting factor. The segments when selected are connected to a reference signal, with the output for each segment, when selected, being proportional to the weighting factor of the segments. Selection means select segments based on the digital input. Summing means add the output from each selected segment to produce an analog output. The number of segments having the second weighting factor is equal to at least twice the ratio of the first and second weighting factors less one. Monitoring means monitor the number of times segments having the second weighting factor are selected in a given monitoring period and generate a correction signal when this number drops below a specified target selection value. Borrow means, responsive to the correction signal of the monitoring means, reduce the number of segments selected having the first weighting factor and increase the number of segments selected having the second weighting factor.