Abstract:
It is known to perform sample rate conversion. A sample rate converter is arranged to receive digital data at an input sample rate Fs and to output data at an output sample rate Fo, where Fo=Fs/N, and N is decimation factor greater than 1. A problem can arise with sample rate converters when a user wishes to change the decimation rate. Generally a sample rate converter needs to discard the samples in its filter when the decimation rate is changed, and the filter output is unusable until the filter has refilled with values taken at the new decimation rate. The sample rate converter provided here does not suffer from this problem. The sample rate converter includes at least Q channels. Each channel comprises a Qth order filter arranged to select input signals at predetermined intervals from a run of P input signals, and to form a weighted sum of the selected input signals to generate an output value, and where the runs of P input signals of one channel are offset from the runs of P signals of the other channels.
Abstract:
A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N−1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2π radians or a multiple thereof, where N is greater than 1.
Abstract:
A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N−1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2π radians or a multiple thereof, where N is greater than 1.
Abstract:
A drive signal for a motor-driven mechanical system has zero (or near zero) energy at an expected resonant frequency of the mechanical system. These techniques not only generate a drive signal with substantially no energy at the expected resonant frequency, they provide a zero-energy “notch” of sufficient width to tolerate systems in which the actual resonant frequency differs from the expected resonant frequencies.
Abstract:
A pipeline analog to digital converter comprising: a first analog to digital converter for determining a first part of an analog to digital conversion result, and for forming a residue signal; an amplifier for amplifying the residue signal, the amplifier including at least one offset sampling capacitor for sampling an offset of the amplifier, wherein at least one resistance is associated with the at least one capacitor so as to form a filter, and the at least one resistor is variable such that an amplifier bandwidth can be switched between a first bandwidth and a second bandwidth less than the first bandwidth during sampling of the offset.
Abstract:
Embodiments of the present invention provide a drive signal for a motor-driven mechanical system whose frequency distribution has zero (or near zero) energy at the expected resonant frequency of the mechanical system. The drive signal may be provided as a pair of steps sufficient to activate movement of the mechanical system and then park the mechanical system at a destination position. The steps are spaced in time so as to have substantially zero energy at an expected resonant frequency fR of the mechanical system. The drive signal may be filtered to broaden a zero-energy notch at the expected resonant frequency fR.
Abstract:
A gain matching method for a single bit gain ranging analog to digital converter including selecting, in response to a gain setting, a number of gain elements to be enabled in a multi-element gain controlled array interconnected between an analog input and an analog to digital converter, and patterning the enablement of the selected number of gain elements among the gain elements for matching the gain of the analog to digital converter for a range of gain settings of the converter to reduce in-band gain error due to gain element mismatch.
Abstract:
A phase lock loop RF modulator system including a phase lock loop circuit having a phase detector circuit responsive to an input reference signal and a feedback signal, an oscillator circuit responsive to the phase detector circuit for providing an output signal, a forward path from the phase detector circuit to the oscillator circuit, and a feedback path from the oscillator circuit to the phase detector circuit. The system also includes a first modulation port coupled to the feedback path, a second modulation port coupled to the forward path, and a gain mismatch detection circuit responsive to modulation data and a phase error between the reference signal and the feedback signal for providing an indicator output signal that represents the gain mismatch between the first modulation port and the second modulation port.
Abstract:
An accurate, low noise conditionally resetting integrator circuit in an analog to digital system samples, with an analog to digital converter, the output of an integrating circuit a number of times during a measuring period; isolates the input for the integrating circuit during sample event; generates a reset signal in response to the integrating circuit output reaching a predetermined level; and resets the feedback capacitor of the integrating circuit by isolating it from the amplifier circuit of the integrating circuit and connecting it to a reference source during a sample event.
Abstract:
A multi-bit continuous-time sigma-delta analog-to-digital converter (ADC) has a differential input stage which receives an analog input signal current. A multi-bit feedback current digital-to-analog converter (IDAC) generates a multi-level feedback current depending on a digital feedback signal from a flash ADC. An integrator has a differential input that integrates the difference of the generated current by the multi-bit IDAC and the input signal current on a continuous-time basis. The input stage further comprises a first biasing current source and a second biasing current source which bias the input stage in a mid-scale condition. A first summing node connects to the first differential input line, a first differential input of the integrator and the first output branch. A second summing node connects to the second differential input line, a second differential input of the integrator and the second output branch. A set of chopping switches alternately connect the biasing current sources to the summing nodes in a first configuration and a second, reversed, configuration. The converter receives a modulator clock signal at a frequency FS and the chopping switches can operate at FS or a binary subdivision thereof. The integrator amplifier can also be chopper-stabilized.