Abstract:
Apparatus, including a pump system controller, features a signal processor or processing module configured at least to: receive signaling containing information about pump differential pressure, flow rate and corresponding power data at motor maximum speed published by pump manufacturers, as well as instant motor power and speed, for a system of pumps arranged in a multiple pump configuration; and determine corresponding signaling containing information about instant pump differential pressure and flow rate for the system of pumps arranged in the multiple pump configuration using a combined affinity equation and numerical interpolation algorithm, based upon the signaling received.
Abstract:
Apparatus includes a signal processor that receives signaling containing information about real time pump operating parameters related to pumps forming part of a pumping system in a plant/facility, and a user input selecting a pump for displaying the real time pump operating parameters on a control monitor to allow a plant/facility operator to implement a centralized pump control of the pumps at a given centralized location; and that determines corresponding signaling containing information to display on the control monitor the real time pump operating parameters to allow the plant/facility operator to implement the centralized control of the pumps at the given centralized location, based upon the signaling received.
Abstract:
A volute for a pump featuring a volute or casing having a pump inlet for receiving a fluid being pumped, a pump discharge for providing the fluid, and a volute or casing vane forming double volutes therein. The volute has an upper cutwater farthest from the pump discharge defining an upper cutwater throat area and an end of passage for the upper cutwater, and also has a lower cutwater closest to the pump discharge defining a lower cutwater throat and a corresponding end of passage for the lower cutwater. The upper cutwater throat area is dimensioned to be greater than and not equal to the lower cutwater throat area so the upper cutwater throat area and the lower cutwater throat area provide substantially equal flow velocity at both the upper cutwater and the lower cutwater in response to an angular sweep of the fluid being pumped. The end of passage for the upper cutwater is dimensioned with an upper cutwater passage area that is greater than and not equal to a corresponding lower cutwater passage area of the corresponding end of passage for the lower cutwater so that upper and lower cutwater passage areas at the pump discharge are balanced as a function of differing rates of flow of the fluid being pumped therein and so that the fluid being pumped from associated ends of the upper and lower cutwater passage areas meets at the pump discharge with a substantially equal velocity.
Abstract:
The present invention provides apparatus, including a hydronic sensorless pumping system, that features a signal processor or processing module configured to receive signaling containing information about motor readout values of power and speed, and also about pump and system characteristics equations together with empirical power equations that are constructed by a polynomial best-fit function together with pump affinity laws based upon a pump curve published by a pump manufacturer; and determine corresponding signaling containing information about a pump or system pressure and a flow rate at the motor readout values of power and speed, based upon the signaling received.
Abstract:
A valve includes a body having an upstream port to measure upstream pressure and a downstream port to measure downstream pressure, both ports configured re a common axis, and includes a ball arranged in the body to rotate re the common axis between open and closed positions to allow for fluid flow/non-fluid flow. The ball has a calibrated member having a calibrated orifice to allow fluid flow and has a flow coefficient, an upstream pressure tap located upstream of the calibrated orifice and in fluidic communication with the upstream port to measure upstream pressure when in the open position, the upstream pressure tap angled re the common axis, and a downstream pressure tap located downstream of the calibrated orifice and in fluidic communication with the downstream port to measure downstream pressure when in the open position, the downstream pressure tap angled re the common axis, so conditions of fluid flow are determined based on a measured pressure differential between upstream and downstream pressure taps re the flow coefficient of the calibrated orifice when in the open position.
Abstract:
Apparatus, such as a pump controller, features a signal processor configured at least to: receive signaling containing information about a linear set point control curve based at least partly on an adaptive set point control curve related to fluid being pumped by a pump in a pumping system, and determine a control set point based at least partly on the signaling received. The signal processor may be configured to provide a control signal containing information to control the pump based on the control set point determined.
Abstract:
A balance or flow limiting valve features a valve body/member having a flow rate indicator/scale containing setting having printed flow rates calibrated in units of measure in volume per time increment between a minimum flow rate position (MIN) and a maximum flow rate position (MAX); and a knob/handle having a position indicator and being moveable to any continuous position on the flow rate indicator/scale between MIN and MAX in response to a user applied force, where the relationship between the flow rate indicator/scale and the position indicator is based on calibrated flow characteristics of the balance or flow limiting valve. The user can set an exact desired flow rate in one operation by moving the knob/handle to a desired position between MIN and MAX without consulting a printed flow curve or balance calculator to determine the desired exact flow rate.
Abstract:
A connector assembly includes a main body having a fluid conduit extending therethrough. The connector assembly further includes a flow reducer insert positioned in the fluid conduit, and the flow reducer insert includes a plurality of channels defining flow paths through the conduit. The connector assembly further includes a collimator coupled to the main body, and the collimator includes a plurality of holes configured to provide a substantially columnated flow path.
Abstract:
A spiral heat exchanger features: a cold fluid inlet manifold, a hot fluid inlet manifold and at least one spiral fluid pathway. The cold fluid inlet manifold receives cold fluid and provide cold inlet manifold fluid. The hot fluid inlet manifold receives hot fluid and provide hot inlet manifold fluid. The at least one spiral fluid pathway includes cold spiral pathways configured to receive the cold inlet manifold fluid and provide cold spiral fluid pathway fluid, and hot spiral pathways configured to receive the hot inlet manifold fluid and provide hot spiral fluid pathway fluid. The cold spiral pathways and the hot spiral pathways are configured in relation to one another to exchange heat between the cold spiral pathway fluid and the hot spiral pathway fluid so that the hot spiral fluid pathway fluid warms the cold spiral fluid pathway fluid, and vice versa.
Abstract:
A volute for a pump featuring a volute or casing having a pump inlet for receiving a fluid being pumped, a pump discharge for providing the fluid, and a volute or casing vane forming double volutes therein. The volute has an upper cutwater farthest from the pump discharge defining an upper cutwater throat area and an end of passage for the upper cutwater, and also has a lower cutwater closest to the pump discharge defining a lower cutwater throat and a corresponding end of passage for the lower cutwater. The upper cutwater throat area is dimensioned to be greater than and not equal to the lower cutwater throat area so the upper cutwater throat area and the lower cutwater throat area provide substantially equal flow velocity at both the upper cutwater and the lower cutwater in response to an angular sweep of the fluid being pumped. The end of passage for the upper cutwater is dimensioned with an upper cutwater passage area that is greater than and not equal to a corresponding lower cutwater passage area of the corresponding end of passage for the lower cutwater so that upper and lower cutwater passage areas at the pump discharge are balanced as a function of differing rates of flow of the fluid being pumped therein and so that the fluid being pumped from associated ends of the upper and lower cutwater passage areas meets at the pump discharge with a substantially equal velocity.