Abstract:
The present invention provides a NAND gate structure, comprising: a substrate; a gate insulation layer formed on the substrate; a source/drain region formed in the substrate; a middle gate formed on the gate insulator layer, a first gate and a second gate on each side of the middle gate, first sidewall spacers between the first gate and the middle gate and between the second gate and the middle gate, and second sidewall spacers outside the first gate and the second gate, wherein, a first contact hole region is provided on the middle gate, second contact hole regions are provided respectively on the first gate and the second gate, and the first contact hole region and the second contact hole regions are in staggered arrangement. The present invention proposes a new NAND structure and a method of manufacturing the same. With the NAND structure, about 30-50% area of the chip may be effectively reduced.
Abstract:
The present invention provides a semiconductor structure and a manufacturing method thereof. The method comprises: providing a semiconductor substrate comprising semiconductor devices; depositing a copper diffusion barrier layer on the semiconductor substrate; forming a copper composite layer on the copper diffusion barrier layer; decomposing the copper composite at corresponding positions, where copper interconnection is to be formed, into copper according to the shape of the copper interconnection; and etching off the undecomposed copper composite and the copper diffusion barrier layer underneath, to interconnect the semiconductor devices. The present invention is adaptive for manufacturing interconnection in integrated circuits.
Abstract:
Embodiments of the present invention disclose a method for manufacturing a Fin Field-Effect Transistor. When a fin is formed, a dummy gate across the fin is formed on the fin, a spacer is formed on sidewalls of the dummy gate, and a cover layer is formed on the first dielectric layer and on the fin outside the dummy gate and the spacer, then, an self-aligned and elevated source/drain region is formed at both sides of the dummy gate by the spacer, wherein the upper surfaces of the gate and the source/drain region are in the same plane. The upper surfaces of the gate and the source/drain region are in the same plane, making alignment of the contact plug easier; and the gate and the source/drain region are separated by the spacer, thereby improving alignment accuracy, solving inaccurate alignment of the contact plug, and improving device AC performance.
Abstract:
A semiconductor structure which exhibits high device performance and improved short channel effects is provided. In particular, the present invention provides a metal oxide semiconductor field effect transistor (MOFET) that includes a low dopant concentration within an inversion layer of the structure; the inversion layer is an epitaxial semiconductor layer that is formed atop a portion of the semiconductor substrate. The inventive structure also includes a well region of a first conductivity type beneath the inversion layer, wherein the well region has a central portion and two horizontally abutting end portions. The central portion has a higher concentration of a first conductivity type dopant than the two horizontally abutting end portions. Such a well region may be referred to as a non-uniform super-steep retrograde well.
Abstract:
The invention relates to a method for forming a semiconductor structure, comprising: providing a semiconductor substrate which comprises a dummy gate formed thereon, a spacer surrounding the dummy gate, source and drain regions formed on two sides of the dummy gate, respectively, and a channel region formed in the semiconductor substrate and below the dummy gate; removing the dummy gate to form a gate opening; forming a stressed material layer in the gate opening; performing an annealing to the semiconductor substrate, the stressed material layer having tensile stress characteristics during the annealing; removing the stressed material layer in the gate opening; and forming a gate in the gate opening. By the above steps, the stress memorization technique can be applied to the pMOSFET.
Abstract:
A method for manufacturing a semiconductor structure comprises: providing a substrate, forming an active region on the substrate, forming a gate stack or a dummy gate stack on the active region, forming a source extension region and a drain extension region at opposite sides of the gate stack or dummy gate stack, forming a spacer on sidewalls of the gate stack or dummy gate stack, and forming a source and a drain on portions of the active region exposed by the spacer and the gate stack or dummy gate stack; removing at least a part of a source-side portion of the spacer, such that the source-side portion of the spacer has a thickness less than that of a drain-side portion of the spacer; and forming a contact layer on portions of the active region exposed by the spacer and the gate stack or dummy gate stack. Correspondingly, the present invention further provides a semiconductor structure. The present invention is beneficial to the reduction of the contact resistance of the source extension region and meanwhile can also reduce the parasitic capacitance between the gate and the drain extension region.
Abstract:
A semiconductor device comprises: a semiconductor substrate located on an insulating layer; and an insulator located on the insulating layer and embedded in the semiconductor substrate, wherein the insulator applies stress therein to the semiconductor substrate. A method for forming a semiconductor device comprises: forming a semiconductor substrate on an insulating layer; forming a cavity within the semiconductor substrate so as to expose the insulating layer; forming an insulator in the cavity, wherein the insulator applies stress therein to the semiconductor substrate. It facilitates the reduction of the short channel effect, the resistance of source/drain regions and parasitic capacitance.
Abstract:
The present invention provides a semiconductor structure, comprising: a substrate; a gate formed on the substrate, and a source and drain formed in the substrate and disposed at two sides of the gate; raised portions formed on the source and the drain, respectively, a height of the raised portions being approximate to a height of the gate; and a metal silicide layer and contact holes formed on the raised portions and on the gate. By virtue of the raised portions added to the source/drain in an embodiment of the present invention, the height difference between the gate and the source/drain may be decreased, such that the formation of the contact holes becomes much easier.
Abstract:
The present application discloses a method for manufacturing a semiconductor device, comprising the steps of: forming a semiconductor substrate, a gate stack and a second protection layer in sequence on a first insulating layer; after defining a gate region and removing portions of the second protection layer and the gate stack outside the gate region, while keeping portions of the stop layer, the semiconductor layer and the second insulating layer which covers sidewalls of the patterned semiconductor layer outside the gate region and exposing the sacrificial layer, performing source/drain ion implementation in the semiconductor layer; after forming a second sidewall spacer so as to cover at least the exposed portion of the sacrificial layer, removing the first protection layer and the second protection layer so as to expose the semiconductor layer and the gate stack; and forming a contact layer on the exposed portion of the semiconductor layer and the gate stack; performing planarization so as to expose the first protection layer, and then removing the first protection layer, the sacrificial layer, the stop layer and the semiconductor layer with the first sidewall spacer and the second sidewall spacer as a mask, so as to form a cavity which exposes the first insulating layer. It facilitates reduction of short channel effects, resistance of source/drain regions, and parasite capacitance.
Abstract:
A method for forming a semiconductor device comprises: forming at least one gate stack structure and an interlayer material layer between the gate stack structures on a semiconductor substrate; defining isolation regions and removing a portion of the interlayer material layer and a portion of the semiconductor substrate which has a certain height in the regions, so as to form trenches; removing portions of the semiconductor substrate which carry the gate stack structures, in the regions; and filling the trenches with an insulating material. A semiconductor device is also provided. The area of the isolation regions may be reduced.