Abstract:
The present invention provides an apparatus and method for compensating for the variation of a gain spectrum attributable to the temperature variation of a fiber amplifier, and a long-wavelength band dispersion-compensating hybrid amplifier equipped with the gain spectrum compensating apparatus. The apparatus includes a DCF located between a first amplification stage and a second amplification stage to compensate for dispersion of an optical signal output from the first amplification stage and perform Raman amplification of the optical signal using input pumping light; at least one pumping light provision means for providing forward or backward pumping light to the DCF; first and second temperature detection means for detecting temperature variations of the first and second amplification stages, respectively; and control means for controlling intensity of the pumping light of the pumping light provision means according to the detected temperature variations.
Abstract:
A low-noise optical fiber amplifier for performing a long-distance optical transmission in a wavelength division multiplexing optical transmission apparatus is provided. This amplifier includes a first optical fiber amplifier having a pre-stage optical fiber, and a first coupler for supplying pump light to the pre-stage optical fiber; a dispersion compensating Raman amplifier (DCRA) connected to the first optical fiber amplifier and having a dispersion compensating optical fiber (DCF) that compensates for the dispersion accumulated in an optical line and generates a Raman gain, and a second coupler for supplying Raman pump light onto the DCF; and a second optical fiber amplifier connected to the DCRA, and including a post-stage optical fiber and a third coupler for supplying pump light onto the post-stage optical fiber. Accordingly, this optical fiber amplifier is used for terrestrial WDM optical transmission, and thus has remarkably low noise figure compared to the existing optical amplifiers. For this reason, the optical fiber amplifier is available in long-distance transmission, and can be used in optical networks.
Abstract:
A display device includes: a flexible display panel including a recognition pattern; a housing for holding the flexible display panel, wherein varying amounts of a display area of the flexible display panel are exposable to the outside to display an image; and a sensor in the housing for sensing an amount of the exposed display area corresponding to the recognition pattern.
Abstract:
A structural body includes a sapphire underlying substrate; and a semiconductor layer of a group III nitride semiconductor disposed on the underlying substrate. An upper surface of the underlying substrate is a crystal surface tilted at an angle of 0.5° or larger and 4° or smaller with respect to a normal line of an a-plane which is orthogonal to an m-plane and belongs to a {11-20} plane group, from the m-plane which belongs to a {1-100} plane group.
Abstract:
A focusing device for an optical microscope may include a light emitting unit configured to emit laser light having a specific wavelength, a wedge mirror configured to enable the emitted laser light to be incident on a plurality of locations of a surface of a specimen, first and second light receiving units configured to detect an amount of laser light reflected from the surface of the specimen, a spatial filter configured to eliminate out-of-focus light from light beams reflected from the surface of the specimen and to detect an amount of in-focus light, and a control unit configured to generate a control signal used to carry out focus adjustment of the optical microscope using a plurality of light-amount information detected by the first and second light receiving units and the spatial filter.
Abstract:
Provided is a packet/TDM switch that may classify a type of a received signal based on slot recognition information received from an Ethernet mapping unit or a TDM mapping unit, and may process the received signal using a dedicated switch corresponding to each of the Ethernet mapping unit and the TDM mapping unit according to the type of the received signal.
Abstract:
A packet-optical integrated switch without an optical transponder, includes: a packet line card configured to output an Ethernet packet signal to a pre-set output port; a packet switch fabric configured to transfer the packet signal from the packet line card to the output port previously set in a destination address included in the packet signal; a 10 gigabit Ethernet (10 GbE)/optical transport unit level 2 (OTU2) integrated line card configured to convert the packet signal from the packet switch fabric into an OTU2 optical signal having a pre-set wavelength; and a wavelength selection switch fabric configured to allocate the optical signal from the 10 GbE/OTU2 integrated line card to a pre-set wavelength division multiplexing (WDM) port by pre-set wavelength to exchange the optical signal to each port by wavelength, wherein the packet line card, the packet switch fabric, the 10 GbE/OTU2 integrated line card, and the wavelength selection switch fabric perform the reverse operations of the process, respectively.
Abstract:
A power supply device for an organic electroluminescent display includes an inductor charging a first power source, a power supply unit including an input terminal and output terminals, the power supply unit receiving the first power source from the inductor through the input terminal, generating second power sources of different voltage levels, and outputting the second power sources through the output terminals, and a Schottky diode between the input terminal and one of the output terminals.
Abstract:
Provided are a method and an apparatus for converting an interface between high speed data having various capacities. The apparatus includes a data transmitting part and a data receiving part. The data transmitting part generates a deskew channel having respective timing data of a plurality of data transmitted from a first communicating device, and outputs the generated deskew channel together with the plurality of data to a second communicating device. The data receiving part compares the deskew channel transmitted from the second communicating device with the plurality of data to measure skew values of the data, aligns bits and bytes of the plurality of data using the skew values, and transmits the plurality of data to the first communicating device.
Abstract:
Provided are an optical transmission apparatus and method using a light source for wavelength division multiplexing (WDM) optical communication that employs a Fabry-Perot laser diode (F-P LD) whose output wavelength is locked by an externally injected incoherent light, a multifiber, and a waveguide grating router. The light transmission apparatus includes: an incoherent light source (ILS) outputting incoherent light; a plurality of circulators (CIRs) connected to the ILS, receiving the incoherent light from the ILS, and outputting first optical signals; a first waveguide grating router (WGR) outputting the first optical signals output from each of the CIRs to optical fibers corresponding to each of the CIRs, and outputting second optical signals input from the optical fibers to the corresponding CIRs; a plurality of second WGRs corresponding to each of the CIRs, and demodulating the second optical signals output from each of the plurality of CIRs; and a plurality of receivers connected to the plurality of the second WGRs, and inputting the demultiplexed optical signals output from the plurality of second WGRs. A plurality of light sources for WDM optical communication whose output wavelength is locked can increase size and economical efficiency of a light transmission system (subscriber). The N×N WGR can produce a conventional light transmission system and accommodate many subscribers.