摘要:
An input/output (I/O) structure includes a delay element usable for the input path, the output path, or both input and output paths in a user design. In a first mode, the delay element is included in the input path. In a second mode, the delay element is included in the output path. In a third mode, the I/O structure includes the delay in both outgoing signal paths and incoming signal paths, e.g., by utilizing an output tristate signal to control the direction of the delay line. When the output buffer is driving, the delay is inserted in the output path. When the output buffer is tristated, the delay is inserted in the input path. Thus, a single delay element is dynamically shared by both input and output signals that use the same I/O pad. In an optional fourth mode, the delay element is bypassed by both input and output signals.
摘要:
A high-speed, area-efficient level shifter includes transistors having a variety of oxide thicknesses. The level shifter has a protection circuit stage, and a current mirror stage that allows the level shifter to perform over a wide voltage range at a high frequency. The level shifter maintains rise time, fall time, and duty cycle over a wide range of input and output voltage levels.
摘要:
A transistor advantageously embodied in a laterally diffused metal oxide semiconductor device having a gate located over a channel region recessed into a semiconductor substrate and a method of forming the same. In one embodiment, the laterally diffused metal oxide semiconductor device includes a source/drain having a lightly doped region located adjacent the channel region and a heavily doped region located adjacent the lightly doped region. The laterally diffused metal oxide semiconductor device further includes an oppositely doped well located under and within the channel region, and a doped region, located between the heavily doped region and the oppositely doped well, having a doping concentration profile less than a doping concentration profile of the heavily doped region.
摘要:
A method of forming an integrated circuit employable with a power converter. In one embodiment, the method of forming the integrated circuit includes forming a transistor employable as a switch of a power train of the power converter by forming a gate over a semiconductor substrate. The method of forming the transistor also includes forming a source/drain by forming a lightly doped region adjacent a channel region recessed into the semiconductor substrate, forming a heavily doped region adjacent the lightly doped region, and forming an oppositely doped well within the channel region. The method of forming the transistor further includes forming a doped region with a doping concentration profile less than the heavily doped region between the heavily doped region and the oppositely doped well. The method of forming the integrated circuit also includes forming a driver switch of a driver to provide a drive signal to the transistor.
摘要:
An integrated circuit employable with a power converter. In one embodiment, the integrated circuit includes a power switch of a power train of the power converter formed on a semiconductor substrate. The integrated circuit also includes a driver switch of a driver configured to provide a drive signal to the power switch and embodied in a transistor including a gate located over a channel region recessed into the semiconductor substrate. The transistor also includes a source/drain including a lightly doped region located adjacent the channel region and a heavily doped region located adjacent the lightly doped region. The transistor further includes an oppositely doped well located under and within the channel region. The transistor still further includes a doped region, located between the heavily doped region and the oppositely doped well, having a doping concentration profile less than a doping concentration profile of the heavily doped region.
摘要:
An integrated circuit formed on a semiconductor substrate and configured to accommodate higher voltage devices and low voltage devices therein. In one embodiment, the integrated circuit includes a switch formed on the semiconductor substrate and a driver switch of a driver configured to provide a drive signal to the switch and embodied in a transistor. The transistor includes a gate located over a channel region recessed into a semiconductor substrate, and a source/drain including a lightly doped region located adjacent the channel region and a heavily doped region located adjacent the lightly doped region. The transistor also includes an oppositely doped well located under and within the channel region. The transistor still further includes a doped region, located between the heavily doped region and the oppositely doped well, having a doping concentration profile less than a doping concentration profile of the heavily doped region.
摘要:
A metal-oxide semiconductor field effect transistor (MOSFET), a method of manufacturing the MOSFET and a power supply incorporating at least one such MOSFET. In one embodiment, the MOSFET includes: (1) a substrate having an epitaxial layer underlying a gate oxide layer, a portion of the epitaxial layer being a gate region of the MOSFET, (2) an N-type drift region located in the epitaxial layer laterally proximate the gate region and (3) source and drain regions located in the epitaxial layer and laterally straddling the gate and drift regions.
摘要:
The present invention provides a semiconductor device and a method of manufacture therefor. The semiconductor device includes a non-power enhanced metal oxide semiconductor (non-PEMOS) device having first source/drain regions located in a semiconductor substrate, wherein the first source/drain regions include a first dopant profile. The semiconductor device further includes a power enhanced metal oxide semiconductor (PEMOS) device located adjacent the non-PEMOS device and having second source/drain regions located in the semiconductor substrate, wherein the second source/drain regions include the first dopant profile.
摘要:
A system for controlling the impedances of circuits on an integrated circuit chip is provided. At least one circuit is selected to operate as a p-channel reference circuit, and at least one circuit is selected to operate as an n-channel reference circuit. Other circuits are selected to operate as circuits and/or line termination circuits. A digitally controlled impedance (DCI) circuit controls the p-channel reference circuit to determine a desired configuration of p-channel transistors for use in the circuits. The DCI circuit further controls the n-channel reference circuit to determine a desired configuration of n-channel transistors for use in the circuits. The DCI circuit takes into account such factors as resistances of p-channel transistors in the p-channel reference circuit, resistances of n-channel transistors in the n-channel reference circuit, as well as temperature, voltage and process variations. The DCI circuit relays information identifying the desired configurations of the n-channel and p-channel transistors to the circuits. The circuits are then configured in response to this information.
摘要:
A system for controlling the impedances of circuits on an integrated circuit chip is provided. At least one circuit is selected to operate as a p-channel reference circuit, and at least one circuit is selected to operate as an n-channel reference circuit. Other circuits are selected to operate as circuits and/or line termination circuits. A digitally controlled impedance (DCI) circuit controls the p-channel reference circuit to determine a desired configuration of p-channel transistors for use in the circuits. The DCI circuit further controls the n-channel reference circuit to determine a desired configuration of n-channel transistors for use in the circuits. The DCI circuit takes into account such factors as resistances of p-channel transistors in the p-channel reference circuit, resistances of n-channel transistors in the n-channel reference circuit, as well as temperature, voltage and process variations. The DCI circuit relays information identifying the desired configurations of the n-channel and p-channel transistors to the circuits. The circuits are then configured in response to this information.