Abstract:
A method for predicting regeneration may include calculating total mass flow of reducing agent, calculating mass flow of the reducing agent used in nitrate reduction reaction, mass flow of the reducing agent used in NO2 reduction reaction, and mass flow of the reducing agent which is simply oxidized by using the total mass flow of the reducing agent, calculating mass flow of released NO2 and mass flow of reduced NO2 by using the mass flow of the reducing agent used in the nitrate reduction reaction and the mass flow of the reducing agent used in the NO2 reduction reaction, calculating mass flow of NO2 slipped from DeNOx catalyst, and calculating mass of NO2 and mass of NOx remaining at the DeNOx catalyst after regeneration based on the mass flow of the released NO2, the mass flow of the reduced NO2, and the mass flow of the slipped NO2.
Abstract:
An NOx reduction catalyst and an exhaust system using the same may include an NOx reduction catalyst mounted at an exhaust pipe through which exhaust gas passes, wherein the NOx reduction catalyst includes first and second catalyst layers coated on a carrier, the first catalyst layer being disposed close to the exhaust gas, and the second catalyst layer being disposed close to the carrier, wherein a portion of nitrogen oxide contained in the exhaust gas is oxidized while passing through the first catalyst layer, and the oxidized nitrogen oxide is stored in the second catalyst layer, wherein the nitrogen oxide stored in the second catalyst layer is released through a substitution reaction with an additionally injected fuel, and wherein the released nitrogen oxide is reduced by the additionally injected fuel in the first catalyst layer.
Abstract:
An exhaust system may include an injector mounted at an exhaust pipe or an engine and additionally injecting fuel, a diesel fuel cracking catalyst mounted at the exhaust pipe downstream of the injector and converting additionally injected fuel into a high-reactivity reducing agent through thermal cracking, a DE-NOx catalyst mounted at the exhaust pipe downstream of the diesel fuel cracking catalyst, storing the nitrogen oxide contained in the exhaust gas, and releasing the stored nitrogen oxide by the additionally injected fuel so as to reduce the nitrogen oxide through oxidation-reduction reaction with the high-reactivity reducing agent, and a control portion controlling an additional injection of fuel according to driving condition of the engine, wherein the control portion may control the injector to additionally inject the fuel according to a predetermined injection pattern in a case that driving condition of the engine satisfies an additional injection condition of the fuel and an additional injection timing condition of the fuel.
Abstract:
An NOx reduction catalyst and an exhaust system using the same may include an NOx reduction catalyst mounted at an exhaust pipe through which exhaust gas passes, wherein the NOx reduction catalyst includes first and second catalyst layers coated on a carrier, the first catalyst layer being disposed close to the exhaust gas, and the second catalyst layer being disposed close to the carrier, wherein a portion of nitrogen oxide contained in the exhaust gas is oxidized while passing through the first catalyst layer, and the oxidized nitrogen oxide is stored in the second catalyst layer, wherein the nitrogen oxide stored in the second catalyst layer is released through a substitution reaction with an additionally injected fuel, and wherein the released nitrogen oxide is reduced by the additionally injected fuel in the first catalyst layer.
Abstract:
A method of driving a liquid crystal display device includes multiplying a frame frequency of an inputted current frame to generate a multiplied odd-numbered frame and a multiplied even-numbered frame; determining whether said current frame is a still image frame or a dynamic image frame; detecting an edge area at which a motion blur occurs from the multiplied odd-numbered frame and the multiplied even-numbered frame; converting gray level values of pixels positioned at the detected edge area at the multiplied odd-numbered frame and the multiplied even-numbered frame; and continuously outputting the multiplied odd-numbered still image frame and the multiplied even-numbered still image frame or continuously outputting the multiplied odd-numbered dynamic image frame and the multiplied even-numbered dynamic image frame having the converted gray level values in accordance with the determined result. A liquid crystal display device is also disclosed.
Abstract:
A liquid crystal display device including a liquid crystal panel, a gate driver configured to drive a plurality of gate lines on the panel, a data driver configured to drive a plurality of data lines on the panel in response to the pixel data stream, a timing controller configured to control the gate driver and the data driver, and a single-chip drive voltage generating section configured to supply voltages used by the common electrode on the liquid crystal panel, the gate driver, the data driver, and the timing controller using an external input voltage.
Abstract:
Disclosed are an enzyme, having the amino acid sequence of SEQ. ID. No. 1 with the activity of hydrolyzing amylopectin, starch, glycogen and amylose, a gene encoding the enzyme, and a transformed cell expressing the gene. Also disclosed is a method of producing an enzyme capable of degrading amylopectin, starch, glycogen and amylose, which comprises culturing the cell, expressing the enzyme in the cell and purifying the enzyme. A composition comprising the enzyme is provided for removing dextran or polysaccharide contaminants during sugar production.
Abstract translation:公开了具有SEQ ID NO:1的氨基酸序列的酶。 ID。 第1号水解支链淀粉,淀粉,糖原和直链淀粉的活性,编码该酶的基因和表达该基因的转化细胞。 还公开了能够降解支链淀粉,淀粉,糖原和直链淀粉的酶的方法,其包括培养细胞,在细胞中表达酶并纯化酶。 提供包含该酶的组合物用于在糖生产期间除去葡聚糖或多糖污染物。