Abstract:
A method is provided for facilitating multicast service. The method may include receiving data multicast to members of a multicast group. The method may further include determining, based at least in part on an indication received during multicast of the data, that a late joining device has joined the multicast group subsequent to initiation of the multicast. The method may additionally include marking, based at least in part on the received indication, a point at which the late joining device began to participate in the multicast. A corresponding apparatus and computer program product are also provided.
Abstract:
Apparatus (systems) and methods are described for generating and displaying a virtual true 3D image viewable by a single eye of a viewer. A fixed-curve mirror is translated along an optical axis in synchrony with a temporally-modulated 2D image generator to generate a virtual image in multiple virtual image planes, enabling depth perception of the image by a single eye of the viewer.
Abstract:
Disclosed are methods and apparatus for setting up cellular controlled device-to-device communications. A method can comprise sending, from a first device to a radio network node, a request to initiate device-to-device communication with a second device, the request comprising an identification of the second device and a first indicator indicating an intention of a device-to-device type of the communication; receiving, from the radio network node, a resource allocation; and transmitting service contents in the device-to-device communication directly between the first device and the second device using the allocated resources.
Abstract:
A channel decoding method and decoder are disclosed. The decoding method is based on a Circular Viterbi Algorithm (CVA), rules out impossible initial states one by one through iterations according the received soft information sequence, and finally finds the global optimal tail-biting path. In the present invention, all impossible iterations are ruled out through multiple iterations, and only the initial state having most likelihood with the received sequence survives. The algorithm is finally convergent to an optimal tail-biting path to be output. In addition, the method also updates a metric of a maximum likelihood tail-biting path (MLTBP) or rules out impossible initial states through the obtained surviving tail-biting path, thereby effectively solving the problem that the algorithm is not convergent due to a circular trap, providing a practical optimal decoding algorithm for a tail-biting convolutional code, reducing the complexity of an existing decoding scheme, and saving the storage space.
Abstract:
A method for manufacturing a semiconductor structure comprises following steps: providing an SOI substrate, forming a gate stack on the SOI substrate, forming sidewall spacers on sidewalls of the gate stack, and forming source/drain regions on each side of the gate stack; depositing a first metal layer on surfaces of an entire semiconductor structure, and then removing the first metal layer; forming an amorphous semiconductor layer on surfaces of the source/drain regions; depositing a second metal layer on surfaces of the entire semiconductor structure, and then removing the second metal layer; and annealing the semiconductor structure. Accordingly, the present invention further provides a semiconductor structure. The present invention is capable of effectively reducing contact resistance at source/drain regions.
Abstract:
There are disclosed a method of and system and apparatus for performing an uplink feedback, applicable to a dynamic sub-frame system, so as to avoid collision of ACK/NACK resources between a non-dynamic system and a dynamic system from occurring. The method includes: determining ACK/NACK resource for carrying ACK/NACK, corresponding to downlink data in a sub-frame n according to a set of sub-frames including a sub-frame in which the downlink data is received; and transmitting ACK/NACK information corresponding to the downlink data over the ACK/NACK resource in the sub-frame n, wherein the set of sub-frames includes a first set of sub-frames and/or a second set of sub-frames; the set of sub-frames is determined by obtained uplink/downlink sub-frame configuration information and flexible sub-frame information; the uplink/downlink sub-frame configuration information indicates the type of each sub-frame in a radio frame as an uplink sub-frame, a downlink sub-frame and a special sub-frame; and the flexible sub-frame information indicates the type of each sub-frame in a radio frame as an uplink sub-frame, a downlink sub-frame, a special sub-frame and a flexible sub-frame, wherein the flexible sub-frame can be used for transmission of uplink or downlink data.
Abstract:
The present invention discloses a cluster head assisted method for converting a user terminal from device-to-device (D2D) communication to cellular communication. When quality of a D2D link between a user terminal and a cluster head is lower than a predetermined threshold, if the user terminal has to leave the cluster but still expects to continue an original the service, the user terminal performs cell search and random access, and establishes a radio resource control (RRC) connection with a target base station of a cellular network. Switching from D2D communication to cellular communication is implemented with the assistance of the cluster head, and a communication manner after the switching is provided. The present invention implements mobile switching from D2D communication in distributed cluster communication to cellular communication, which can reduce route search delay and save wireless resources.
Abstract:
A technique includes: comparing (a) measurements made at the first access node of transmissions made by a plurality of other access nodes against (b) measurements made at the communication device of transmissions made by said plurality of other access nodes; and deciding whether or not to select said first access node as a handover candidate for said communication device based at least partly on the result of said comparison.
Abstract:
The disclosure relates to generation of mobility information. A mobile device can determine, based on measurements, at least one parameter relating to its movement relative to a cell. A weighting of a counter output for use in estimation of a mobility state of the mobile device is determined. The determining includes comparison of the at least one parameter to at least one threshold. Information about the weighting can be provided by a network element. When the network element obtains the weighted estimation it can take it into account in mobility control of the mobile device.
Abstract:
A preparation method for molecular recognition sensor by electrodeposition is provided. The preparation method is as following: forming molecularly imprinted polymeric micelles by self-assembly of ionic type photosensitive copolymers; forming a film on the surface of an electrode by electrodepositing the molecularly imprinted polymeric micelles at a constant potential; crosslinking the electrodeposited micellar film via ultraviolet light irradiation; extracting the template molecules from the crosslinked film to obtain electrode modified by the molecularly imprinted polymeric micellar film; and connecting the modified electrode with a sensor device and a computer to construct a molecular recognition sensing system capable of specifically detecting the template molecules.