Abstract:
A multi-chip memory device includes a transfer memory chip communicating input/output signals, a stacked plurality of memory chips each including a memory array having a designated bank, and a signal path extending upward from the transfer memory chip through the stack of memory chips to communicate input/output signals, wherein each bank of each memory chip in the stacked plurality of memory chips is commonly addressed to provide read data during a read operation and receive write data during a write operation, and vertically aligned within the stacked plurality of memory chips.
Abstract:
A multi-chip memory device includes a transfer memory chip communicating input/output signals, a stacked plurality of memory chips each including a memory array having a designated bank, and a signal path extending upward from the transfer memory chip through the stack of memory chips to communicate input/output signals, wherein each bank of each memory chip in the stacked plurality of memory chips is commonly addressed to provide read data during a read operation and receive write data during a write operation, and vertically aligned within the stacked plurality of memory chips.
Abstract:
A method and circuit are provided for driving a word line. The word line driving circuit includes first and second power drivers, a switching unit and a word line driver. The first power driver is driven to a boosting voltage level and the second power driver is driven to an internal power voltage level. The switching unit transfers a first output of the first power driver to the word line driver in response to a first switching signal and transfers a second output of the second power driver to the word line driver in response to a second switching signal. The word line driver alternately drives a word line to the first output and the second output transferred from the switching unit in response to a word line driving signal.
Abstract:
A semiconductor memory device includes a sense amplifier, a sense amplifier driving signal driver, and a controller. The sense amplifier is configured to sense and amplify a signal of a bit line and a signal of a complementary bit line in response to a sense amplifier driving signal. The sense amplifier driving signal driver includes a first driving signal driver configured to drive via a transmission line the sense amplifier driving signal in response to a first sense amplifier control signal, and a second driving signal driver configured to drive via the transmission line the sense amplifier driving signal in response to a second sense amplifier control signal. The controller activates the first sense amplifier control signal in response to an active command, and toggles the second sense amplifier control signal while the first sense amplifier control signal is activated.
Abstract:
A data buffer, such as a data strobe input buffer or a data input buffer, which may operate in multiple modes, such as a single mode (SM) and a dual mode (DM) and where the mode is selected by providing a signal, such as an external signal such as an address signal or an external command signal. A data buffer which can be used for a SM/DM dual-use and can improve a data setup/hold margin. A semiconductor memory device including one or more of the data buffers described above. A method for controlling propagation delay times which can improve a data setup/hold margin in a SM/DM dual-use data buffer.
Abstract:
A memory system includes a plurality of memory devices arranged in sets on at least one memory module, each set including at least one memory device. In some embodiments, the system further includes respective dedicated serial data and control busses configured to couple respective ones of the memory device sets to a memory controller external to the at least one memory module. The dedicated serial data and control busses may be configured to provide unbuffered access to the individual memory devices from the memory controller. In other embodiments, dedicated data busses are provided to an external control buffer and dedicated control busses are provided to a control buffer in the module.
Abstract:
The present invention provides an apparatus including a stacked plurality of devices and a related method. The apparatus includes a stacked plurality of devices including a master device and at least one secondary device; a plurality of segments, each segment being associated with one of the stacked plurality of devices; and a plurality of N vertical connection paths traversing the stacked plurality of devices. The apparatus further includes a plurality of M vertical signal paths configured from the plurality of N vertical connections paths, wherein M is less than N, and at least one of the plurality of M vertical signal paths is a merged vertical signal path adaptively configured by the master device using at least one segment from each one of at least two of the plurality of N vertical connection paths.
Abstract:
A stress detection circuit includes a function block and a detection signal generation circuit. The function block outputs a first voltage such that the first voltage is varied depending on an extent that the function block is stressed. The detection signal generation circuit generates a stress detection signal based on the first voltage and a second voltage during a test mode. The stress detection signal represents integration of the function block, and a level of the second voltage corresponds to a level of the first voltage before the function block is stressed.
Abstract:
A method and circuit are provided for driving a word line. The word line driving circuit includes first and second power drivers, a switching unit and a word line driver. The first power driver is driven to a boosting voltage level and the second power driver is driven to an internal power voltage level. The switching unit transfers a first output of the first power driver to the word line driver in response to a first switching signal and transfers a second output of the second power driver to the word line driver in response to a second switching signal. The word line driver alternately drives a word line to the first output and the second output transferred from the switching unit in response to a word line driving signal.
Abstract:
A semiconductor memory device and an arrangement method thereof are disclosed. The semiconductor memory device comprises column selecting signal lines and global data IO signal lines arranged on the same layer in the same direction above a memory cell array; word lines and first local data IO signal lines arranged on a different layer from the column selecting signal lines above the memory cell array, in a perpendicular direction to the column selecting signal lines; and second local data IO signal lines arranged on a different layer from the column selecting signal lines and the word lines above the memory cell array, in the same direction as the first local data IO signal lines.