Abstract:
A fixture assembly and associated methods may be used to secure an optoelectronic module or package during assembly. In particular, embodiments of the fixture assembly may be used to secure the optoelectronic package in different positions for mounting components at different mounting angles. One example of such a package is a transmitter optical sub-assembly (TOSA) module compliant or compatible with the XFP standard. Embodiments of the fixture assembly and associated methods may also be used with other optoelectronic packages in which different components are mounted at different angles.
Abstract:
The present invention discloses a probe cover for an ear thermometer, which comprises: a film cover and a base. The film cover has a cover window able to contact the probe window at the front end of the ear thermometer and a hollow cone able to contact the sidewall of the probe. The width of the cover window is greater than the width of the probe window. Thereby, the present invention can prevent the variation of infrared transmittance caused by the misarrangement and non-uniform thickness of the probe cover film disposed at the front of the probe window.
Abstract:
A modular laser package system may be used to mount one type of laser package, such as a coaxial or TO (transistor outline) can laser package, to a circuit board, such as a transmitter board or a motherboard, designed to receive another type of laser package housing, such as a butterfly-type laser package housing. The modular laser package system may include a circuit board mounting platform, a laser housing mount to mount the laser package to the circuit board mounting platform, and a mounting base to facilitate mounting to the transmitter board or motherboard. The modular laser package system may also include a temperature control device, such as a thermoelectric cooler (TEC), and a temperature sensor, such as a thermistor, mounted to the laser housing mount to control and monitor the temperature of the laser package.
Abstract:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
Abstract:
Apparatus and method for generating a variable-frequency clock is disclosed. A control state machine defines various commands and generates corresponding control signals. A variable-frequency clock generator then outputs the variable-frequency clock that has a specific pattern corresponding with the respective command, where the variable-frequency clock is constructed with a first clock and a second clock having a frequency different from the first clock. A control signals generator accordingly outputs the control signals that are also constructed with the first clock and the second clock.
Abstract:
A major problem in Lead Overlay design for GMR structures is that the magnetic read track width is wider than the physical read track width. This is due to high interfacial resistance between the leads and the GMR layer which is an unavoidable side effect of prior art methods. The present invention uses electroplating preceded by a wet etch to fabricate the leads. This approach requires only a thin protection layer over the GMR layer to ensure that interface resistance is minimal. Using wet surface cleaning avoids sputtering defects and plating is compatible with this so the cleaned surface is preserved Only a single lithography step is needed to define the track since there is no re-deposition involved.
Abstract:
This invention provides a method for accessing memory. The method includes, generating a block index for a block of data, mapping the block index to a physical address of a memory based on the block index and a number N, wherein N is bank number of the memory, storing the block of data into the memory at the physical address, and repeating from the generating step, wherein the mapping step makes each one of the block indexes map in turns to one physical address located at different banks, and result in any logical adjacent block of data be stored physically at different banks of the memory.
Abstract:
A two-way display infrared thermometer comprises a main body. An infrared wave-collecting device is disposed at the front end in the main body. A sensor is disposed at the bottom of the infrared wave-collecting device. A liquid crystal display is disposed on the surface of the main body to display the temperature. A direction detection device is disposed in the main body to detect the horizontal state of the main body so as to control the display direction of the liquid crystal display. A mount is disposed on the main body so that the main body can be supported and adjust the angle of measurement. A direction-switching device is disposed on the main body for manually switching the display direction of the liquid crystal display. Thereby, the infrared thermometer can straightly display the measured temperature for quick reading of the temperature value regardless of standing upright or upside down.