Abstract:
A semiconductor memory device includes a plurality of memory chips each including a chip identification (ID) generation circuit. The chip ID generation circuits of the respective memory chips are operatively connected together in a cascade configuration, and the chip ID generation circuits are activated in response to application of a power supply voltage the memory device to sequentially generate respective chip ID numbers of the plurality of device chips
Abstract:
A method of programming a nonvolatile memory device comprises applying a gradually increasing program voltage to a memory cell, determining the number of verify voltages to be applied to the memory cell during a program loop based on the change of a threshold voltage from an initial state of the memory cell to a target state, and applying at least one of the determined verify voltages to the memory cell to verify whether the memory cell is programmed to the target state.
Abstract:
Provided is a method of programming a non-volatile memory device. The method includes applying a first programming pulse to a corresponding wordline of the non-volatile memory device, applying a second programming pulse to the wordline, wherein a voltage of the second programming pulse is different from that of the first programming pulse, and applying voltages to each bitline connected to the wordline, the voltages applied to each of the bitlines are different from each other according to a plurality of bit values to be programmed to corresponding memory cells in response to the first programming pulse or the second programming pulse.
Abstract:
A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
Abstract:
A flash memory device includes a plurality of memory blocks. A selected memory block among the plurality of memory blocks includes 2n pages of data. The selected memory block includes different types of memory cells capable of storing different numbers of bits.
Abstract:
A method of programming a flash memory device comprises programming selected memory cells, performing a verification operation to determine whether the selected memory cells have reached a target program state, and determining a start point of the verification operation based on a programming characteristic associated with a detection of a pass bit during programming of an initial program state.
Abstract:
A method of programming a nonvolatile memory device comprises applying a gradually increasing program voltage to a memory cell, determining the number of verify voltages to be applied to the memory cell during a program loop based on the change of a threshold voltage from an initial state of the memory cell to a target state, and applying at least one of the determined verify voltages to the memory cell to verify whether the memory cell is programmed to the target state.
Abstract:
A flash memory device includes first and second memory cell array blocks and a row decoder coupled to the first memory cell array block and the second memory cell array block. The row decoder includes a block decoder, a single high voltage level shifter that is coupled to both the first and second memory cell array blocks, the single high voltage level shifter configured to provide a block wordline signal of a high voltage to the first and second memory array blocks in response to a block selection signal received from the block decoder, a first pass transistor unit, and a second pass transistor unit.
Abstract:
Disclosed is a 3D memory device including a first plane having a first mat formed on a first layer and a third mat formed on a second layer disposed over the first layer, the first and third mats sharing a bit line, and a second plane having a second mat formed on the first layer and a fourth mat formed on the second layer. The second and fourth mats share a bit line. Each one of the first through fourth mats includes a plurality of blocks and a block associated with the first plane is simultaneously accessed with a block of the second plane.
Abstract:
A non volatile memory device and method of operating including providing a verification voltage to a gate of a selected memory cell within multiple memory cells and providing a first pass voltage to a gate of a non-selected memory cell within the memory cells during a program verification operation; and providing a read voltage to the gate of the selected memory cell and providing a second pass voltage to the gate of the non-selected memory cell during a read operation. The second pass voltage is greater than the first pass voltage.