Abstract:
A resistive memory device includes a column decoder having a first switch unit, including at least one pair of switches arranged in correspondence to each of a plurality of signal lines, and a second switch unit including a pair of switches arranged in correspondence to the at least one pair of switches of the first switch unit. A first pair of switches of the first switch unit includes a first switch and a second switch that are of the same type, and a second pair of switches of the second switch unit includes a third switch and a fourth switch that are connected to the first pair of switches. A selection voltage is provided to the first signal line by passing through the first switch, and an inhibit voltage is provided to the first signal line by selectively passing through the first switch or the second switch.
Abstract:
A non-volatile memory device may operate by writing a portion of a new codeword to an address in the device that stores an old codeword, as part of a write operation. An interruption of the write operation can be detected before completion, which indicates that the address stores the portion of the new codeword and a portion of the old codeword. The portion of the old codeword can be combined with the portion of the new codeword to provide an updated codeword. Error correction bits can be generated using the updated codeword and the error correction bits can be written to the address.
Abstract:
A non-volatile memory device may operate by writing a portion of a new codeword to an address in the device that stores an old codeword, as part of a write operation. An interruption of the write operation can be detected before completion, which indicates that the address stores the portion of the new codeword and a portion of the old codeword. The portion of the old codeword can be combined with the portion of the new codeword to provide an updated codeword. Error correction bits can be generated using the updated codeword and the error correction bits can be written to the address.
Abstract:
Semiconductor memory devices with a memory cell array including a first word line and a second word line arranged in a first direction, a source line arranged in the first direction between the first word line and the second word line, a bit line pair including a first bit line and a second bit line arranged in a second direction perpendicular to the first direction, a first memory cell including a gate connected to the first word line and first and second regions respectively connected to the second bit line and the source line, and arranged in a third direction between the first direction and the second direction, and a second memory cell including a gate connected to the second word line, a third region and the second region respectively connected to the first bit line and the source line, and arranged in the third direction.
Abstract:
A non-volatile memory device, non-volatile memory cell array and related method of operation are disclosed. The non-volatile memory cell array includes a defined data unit stored in a plurality of non-volatile memory cells capable of being electrically overwritten within the non-volatile memory cell array, and an erase marker corresponding to the data unit and indicating whether the data unit is in an erased state or a not-erased state.
Abstract:
A flash memory device includes a plurality of memory blocks. A selected memory block among the plurality of memory blocks includes 2n pages of data. The selected memory block includes different types of memory cells capable of storing different numbers of bits.
Abstract:
An electrically erasable programmable non-volatile semiconductor memory device. The semiconductor memory device includes a memory cell array comprising a plurality of memory blocks, each memory block comprising a plurality of memory cells, a dummy memory cell, and a select gate transistor. Transfer transistors each having a current path connected between a corresponding wordline enable signal line and a corresponding wordline are controlled by an output of a block selection circuit. The transfer transistors include a dummy transfer transistor electrically coupled to the dummy memory cell, and configured to transmit a dummy wordline enable signal.
Abstract:
A nonvolatile memory device may include a memory cell array adapted to store tail-bit flag information indicating tail-bit memory cells, and a tail-bit controller adapted to calibrate a program start voltage of normal memory cells and a program start voltage of the tail-bit memory cells independently based upon the tail-bit flag information.
Abstract:
There is provided a method and device for reading, writing, or both, data from or to a pattern recognition type optical memory having a light transmittable substrate. Patterns can be formed in the pattern recognition type optical memory from light images representing the data. An optical memory reading device comprises a light source, an image detecting unit for detecting images corresponding to the patterns and generating image signals converted by an optical/electric converter into electric signals. An optical memory writing device comprises a light source, an electric/optical converter for receiving an electric signal corresponding to the data and converting the electric signal into an image signal, and an image generation unit for receiving the light emitted from the light source and the image signal and generating light images corresponding to the image signal, wherein the images are configured to form the patterns on the light transmittable substrate.
Abstract:
A non-volatile memory device includes a memory cell array from which data is read via a plurality of bitlines, which includes a plurality of memory cells having gates respectively connected with a plurality of wordlines, a first type global wordline decoder configured to selectively apply n different voltages, where n is an integer greater than or equal to 3, to a corresponding wordline of the plurality of wordlines in a program mode, and a second type global wordline decoder configured to selectively apply (n−1) different voltages to a corresponding wordline of the plurality of wordlines in the program mode, the second type global wordline decoder having fewer switching elements than the first type global wordline decoder.