Abstract:
A system for maintaining brake cylinder pressure comprises a maintaining valve, a brake pipe, an emergency reservoir, and a brake cylinder configured to be in fluid communication with the brake pipe and the emergency reservoir. The brake pipe is configured to sustain a predetermined pressure within the brake cylinder during a brake application based on a differential between a pressure of the emergency reservoir and a pressure of the brake pipe.
Abstract:
Disclosed is a computer-implemented method for determining dynamic braking data for use in a braking model of at least one train, the method including: (a) determining at least one initial safety factor; (b) determining at least one dynamic braking adjustment factor based at least partially on (i) the expected dynamic braking force, and (ii) specified retarding forces of the train; and (c) determining at least one new safety factor based at least partially on the at least one initial safety factor and the at least one dynamic braking adjustment factor. Also disclosed are braking systems including dynamic braking for a train having at least one locomotive.
Abstract:
Systems and methods for protecting and preventing unauthorized transfer or downloading of recorded train event data for use in a train event recording system of a train. A train event recording system and an authenticated data storage device are also disclosed. According to one preferred and non-limiting embodiment, provided is a system for protecting recorded train event data, the system including at least one external memory device having encrypted authentication data stored thereon, the encrypted authentication data including authentication data encrypted with at least one first key.
Abstract:
Disclosed is a data recording unit and data recording system for use in connection with a vehicle, such as a train, a locomotive of a train, a railcar of a train, and the like.
Abstract:
An end of train device includes an enclosure having an exterior and a hollow interior housing a plurality of components; and a protective arrangement disposed within the hollow interior of the enclosure and fitted at least partially around at least one component housed within the hollow interior. The protective arrangement defines at least one compartment for the at least one component of the plurality components. The protective arrangement at least partially supports and isolates the at least one component from the enclosure. The device also includes an impact resistant handle disposed on the exterior of the enclosure. The handle is configured to absorb impacts without causing substantial deformation to the enclosure.
Abstract:
A data improvement system, including an initial database, a verification database, and a processing device in communication with the initial database and the verification database. The processing device receives data from the initial database and the verification database, and determines verification data based thereon. A track data improvement system and a track database improvement system are also disclosed.
Abstract:
A system, method, and apparatus for detecting and reporting track defects while a train is in motion on railway tracks includes at least one defect sensor configured to sense an acceleration of at least a portion of the train; and at least one computer-readable medium. The at least one computer-readable medium comprises program instructions that, when executed by at least one processor, cause the at least one processor to: detect, while the train is in motion on the railway tracks, at least one track defect in the railway tracks based at least partially on the acceleration of the at least a portion of the train; and generate track defect data based at least partially on a location of the train when the at least one track defect is detected.
Abstract:
A computer-implemented method of transforming movement authority limits for a train traveling in a track network, which includes determining authority of tracks associated with a switch, based at least partially on authority data and/or train authority data for the train, and providing authority on a switch leg of the switch based at least partially on the authority of the associated tracks. The computer-implemented method also includes determining authority of tracks associated with switches on at least two tracks, based at least partially on authority data and/or train authority data for the train, and providing authority on a crossover track between the at least two tracks based at least partially on the authority of the associated tracks.
Abstract:
A height adjustment device for a transit shaft and arm assembly that enables height adjustments without significant disassembly of a transit door. An additional advantage is that the device does not require the use of shims, spacers or adjustment rings to adjust the height of the shaft and arm assemblies. Rotation of a nut threaded on the shaft allows for the adjustment of how much of the shaft hangs below a support member and a bearing. A surface of the nut bears on the bearing and the attached shaft and arm assembly hangs from the bearing and the support member the bearing is attached to. This arrangement allows the arm assembly to pivot along the longitudinal axis of the shaft. This arrangement also allows the height of the shaft and arm assembly to change with changes in position of the nut by threading the nut along the shaft.
Abstract:
A system, method, and apparatus for automatically controlling a locomotive include a control interface unit configured to receive input from at least one manual control, receive input from an automatic control system, and transmit commands to a locomotive control system, wherein the commands are based at least partially on the input received from the automatic control system. A bypass relay may also be provided to enable and disable communication between the at least one manual control and the locomotive control system.