Abstract:
A lead frame substrate, includes: a metal plate having first and second surfaces; a semiconductor element mounting section, semiconductor element electrode connection terminals, and a first outer frame section formed on the first surface; external connection terminals formed on the second surface and electrically connected with the semiconductor element electrode connection terminals; a second outer frame section formed on the second surface; and a resin layer formed on a gap between the first outer frame and the second outer frame. Each external connection terminal buried in the resin layer has at least one projection formed on a side surface thereof throughout a side lower portion of the first surface.
Abstract:
A fast reactor 1 controlled with a reflector comprises: a reactor vessel 7 accommodating therein a coolant 5; a reactor core 2 disposed in the reactor vessel 7 and immersed in the coolant 5; and a reflector 4 that vertically moves for adjusting leakage of neutrons generated from the reactor core 2 to control a reactivity of the reactor core 2, the reflector 4 including a neutron reflecting part 4a disposed on an outside of the reactor core 2 in a vertically movable manner, the neutron reflecting part 4a having a neutron reflecting ability higher than that of the coolant 5, and a cavity part 4b positioned above the neutron reflecting part 4a, the cavity part 4b having a neutron reflecting ability lower than that of the coolant 5. The neutron reflecting part 4a is formed of a plurality of metal plates 37 that are stacked on each other. Each of the metal plates 37 has a plurality of coolant channels 36 through which the coolant 5 flows.
Abstract:
A ceramic heat exchanger includes a heat exchange section that heat-exchanges between two fluids A and B flowing opposite directions to each other. The heat exchange section includes ceramic blocks stacked one on top of another with a seal therebetween. The ceramic blocks have a plurality of parallel lines of flow channels, each line defined by the flow channels through which the same fluid flows, any two adjacent lines being defined by the flow channels through which the different fluids A and B flow respectively. Both ends in the stacking direction of the stack are bound to join and integrate the ceramic blocks with tightening means including end plates and a tie rod. A thermal expansion absorber is disposed on an external surface of the end plates for absorbing thermal expansion in the axial direction of the tie rod.
Abstract:
A reflector control type fast reactor 1 comprises: a reactor vessel 7 accommodating therein a primary coolant 5; a reactor core 2 disposed in the reactor vessel 7 and immersed in the primary coolant 5; and a reflector 4 that vertically moves for adjusting leakage of neutrons generated from the reactor core 2 to control a reactivity of the reactor core 2, the reflector 4 including a neutron reflecting part 4a disposed on an outside of the reactor core 2 in a vertically movable manner, the neutron reflecting part 4a having a neutron reflecting ability higher than that of the primary coolant 5, and a cavity part 4b positioned above the neutron reflecting part 4a, the cavity part 4b having a neutron reflecting ability lower than that of the primary coolant 5. The neutron reflecting part 4a is formed of a plurality of metal plates 37 that are stacked on each other. Each of the metal plates 37 has a plurality of coolant channels 36 through which the primary coolant 5 flows.
Abstract:
A method of staining bacteria comprises: working a polymethine dye on a sample in the presence of a substance capable of reducing nitrite ions to stain bacteria in the sample. A method of detecting bacteria comprises the following steps of: (1) working a polymethine dye on a sample by a method as described above to stain bacteria in the sample, (2) introducing the thus treated sample into a detecting part of a flow cytometer and irradiating cells of the stained bacteria one by one with light to measure scattered light and fluorescent light emitted from each of the cells; and (3) discriminating the bacteria from other components in accordance with an intensity of a scattered light signal and an intensity of a fluorescent light signal or a pulse width reflecting the length of particles to count the bacteria.
Abstract:
In a piezoelectric power generation device and a piezoelectric ceramics member used in the device excellent in its power generation efficiency in which the polarization of piezoelectric ceramics elements is set to the same direction and an extremely thin metallic electrode is sandwiched in between the piezoelectric ceramics elements so that a current output obtained in the piezoelectric power generation device can be improved substantially to about two times as high as a current output obtained by a usual piezoelectric power generation device and the parasitic resonance of the electrode can be prevented, the piezoelectric power generation device generates power by applying a distortion deformation to piezoelectric ceramics members formed in plate shapes. The piezoelectric power generation device includes the piezoelectric ceramics members each having the two plate shaped piezoelectric ceramics elements whose polarization is set to the same direction and the extremely thin metallic electrode interposed between the piezoelectric ceramics elements, the piezoelectric ceramics member being formed in a laminar shape by uniting the piezoelectric ceramics elements through the metallic electrode; and the cushion materials for supporting central parts or both end parts of one surfaces of the piezoelectric ceramics members. Thus, the piezoelectric power generation device has a soft support structure in which the natural oscillation of the piezoelectric ceramics members is hardly transmitted to other structural members. A step part is formed in the piezoelectric ceramics member and the metallic electrode.
Abstract:
In a piezoelectric power generation device and a piezoelectric ceramics member used in the device excellent in its power generation efficiency in which the polarization of piezoelectric ceramics elements is set to the same direction and an extremely thin metallic electrode is sandwiched in between the piezoelectric ceramics elements so that a current output obtained in the piezoelectric power generation device can be improved substantially to about two times as high as a current output obtained by a usual piezoelectric power generation device and the parasitic resonance of the electrode can be prevented, the piezoelectric power generation device generates power by applying a distortion deformation to piezoelectric ceramics members formed in plate shapes. The piezoelectric power generation device includes the piezoelectric ceramics members each having the two plate shaped piezoelectric ceramics elements whose polarization is set to the same direction and the extremely thin metallic electrode interposed between the piezoelectric ceramics elements, the piezoelectric ceramics member being formed in a laminar shape by uniting the piezoelectric ceramics elements through the metallic electrode; and the cushion materials for supporting central parts or both end parts of one surfaces of the piezoelectric ceramics members. Thus, the piezoelectric power generation device has a soft support structure in which the natural oscillation of the piezoelectric ceramics members is hardly transmitted to other structural members. A step part is formed in the piezoelectric ceramics member and the metallic electrode.
Abstract:
The present invention provides a non-power source type monitor device installed in a place where a non-power source system needs to be used or a place preferably suitable for the non-power source system, in which a quantity of generated energy not lower than several ten times as much as an output of electric current obtained by a usual piezoelectric power generating device using steel balls can be assuredly obtained by striking a piezoelectric ceramics element once and a piezoelectric power generating device is formed commonly with means capable of automatically repeatedly striking the piezoelectric ceramics element so that a quantity of generated energy of a practical level can be assuredly ensured as a power source of such type of monitor device. The structure thereof includes, in principle,
Abstract:
The present invention provides a novel process for preparing a series of quinazolin-4-one derivatives in high yields with reduced amounts of byproducts, the process comprising reacting, in the presence of a base, a trialkylsilyl halide with a compound represented by the formula ##STR1## wherein; R.sup.5 is a phenyl group which may have 1 to 3 substituents each selected from a lower alkyl group, a lower alkoxy group or a halogen atom, a lower alkyl group, a phenyl-lower alkyl group which may have a halogen atom as a substituent on the phenyl ring, a lower alkenyl group, a lower alkoxy-lower alkyl group or a lower alkynyl group; R.sup.6 is a lower alkyl group, a halogen-substituted lower alkyl group, a lower alkoxycarbonyl group or a phenyl group which may have, as a substituent, a lower alkyl group or a group of the formula ##STR2## wherein A is an oxygen atom or a single bond, Z is a lower alkylene group, R.sup.7 is a lower alkyl group and R.sup.8 is a lower alkoxy group, a phenyl group or a phenyl-lower alkoxy group which may have a halogen atom on the phenyl ring;to produce the quinazolin-4-one derivatives which is valuable as pharmaceuticals or intermediates for synthesis thereof and represented by the formula ##STR3## wherein R.sup.1,R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are as defined above.
Abstract:
In the adhesive spacers which are synthesized as by the impact method in a high-speed air current, resin particles formed solely of an adhesive layer are included in a large amount besides those of adhesive spacers. An adhesive particulate composition is obtained by adjusting these resin particles in terms of grain size. The adhesive particulate composition containing (a) adhesive particles having a thermoplastic resin-containing layer cover at least part of the surfaces of the core particles having an average particle diameter in the range of 1 to 20 .mu.m and a coefficient of variation of not more than 10% and (b) adhesive layer particles formed of the thermoplastic resin and having a ratio of the number of (b) the adhesive layer particles to that of (a) the adhesive particles of not more than 30%, adhesive spacers for a liquid crystal display panel formed of the composition, and the liquid crystal display panel using the spacers are disclosed.