Abstract:
This invention provides methods for spatially localized image editing. For example, an input image is divided into multiple bins in each dimension. For each bin, a histogram is computed, along with local image statistics such as mean, medium and cumulative histogram. Next, for each tile, a type of adjustment is determined and applied, including adjustment associated with Exposure, Brightness, Shadows, Highlights, Contrast, and Blackpoint. The adjustments are done for all tiles in the input image to render a small adjustment image. The small image is then interpolated, for example, using an edge-preserving interpolation, to get a full size adjustment image with adjustment curve for each pixel. Subsequently, per-pixel image adjustments can be performed across an entire input image to render a final adjusted image.
Abstract:
Systems, methods, and computer readable media to improve the operation of electronic display systems are disclosed. Techniques for inverse tone mapping operations for selected standard dynamic range (SDR) images are described. The converted images may be presented on high dynamic range (HDR) displays so as to increase a user's viewing experience (through an expanded dynamic range) while preserving the artistic content of the displayed information. Techniques disclosed herein selectively transform SDR images to HDR images by determining if the SDR images were created from HDR images (e.g., through the fusion of multiple SDR images) and if their quality is such as to permit the conversion without introducing unwanted visual artifacts. The proposed techniques apply a sigmoidal inverse tone mapping function configured to provide a perceptual-based tone mapping. Values for the function's tuning parameters may be set based on what may be determined about the original HDR-to-SDR mapping operation.
Abstract:
Some embodiments provide a novel method for tempering an adjustment of an image to account for prior adjustments to the image. The adjustment in some embodiments is an automatic exposure adjustment. The method performs an operation for a first adjustment on a first set of parameters (e.g., saturation, sharpness, luminance). The method compares the first set of parameters to a second set of parameters to produce a third set of parameters that expresses the difference between the first adjustment and a second adjustment. The method performs a third operation to produce an adjusted image. The first set of parameters quantify a set of prior adjustments to the image by an image capturing device when the image was captured in some embodiments. The second set of parameters is a set of target parameters. The third set of parameters specify the tempered adjustment of the image.
Abstract:
A non-transitory machine readable medium that has a computer program for adjusting color values of an image represented in a color space. The image includes several pixels. Each pixel includes a set of color values. The computer program receives a selection of a location on the image. The computer program determines a type of content that is associated with the selected location on the image. From several different image editing operations, the computer program selects a set of image editing operations based on the determined type of content. The computer program displays a set of user interface controls that is associated with the selected set of image editing operations.
Abstract:
A non-transitory machine readable medium that has a computer program for adjusting color values of an image represented in a color space. The image includes several pixels. Each pixel includes a set of color values. The computer program receives a selection of a location on the image. The computer program determines a type of content that is associated with the selected location on the image. From several different image editing operations, the computer program selects a set of image editing operations based on the determined type of content. The computer program displays a set of user interface controls that is associated with the selected set of image editing operations.
Abstract:
A method and apparatus for generating a grayscale image. The method and apparatus receive a single value. From the single value, the method and apparatus generate a set of grayscale weighting values. The method and apparatus generate the grayscale based on a color image and the set of grayscale weighting values. By limiting the number of values to a single value, the method and apparatus prevents a user from arbitrarily selecting a number of possible weighting values which could result in a grayscale image that is too dim or too bright. This single control method and apparatus quickly and efficiently produces a grayscale image that is neither too bright nor too dim.
Abstract:
Some embodiments of the image editing and organizing application described herein provide an automatic enhancement process that includes vibrancy adjustment. The vibrancy adjustment increases the saturation of multiple pixels. The saturation of each pixel is determined by subtracting the lowest component value from the highest component value. The process determines an overall saturation of the image using a histogram. The histogram is generated using doubled saturation values for pixels with blue and green as the highest component value.
Abstract:
A method and system for providing a dynamic grain effect tool for a media-editing application that generates a grain effect and applies the grain effect to a digital image. The application first generates a random pixel field for the image based on a seed value. The application then generates a film grain pattern for the image by consecutively applying a blurring function and an unsharp masking function, based on an ISO value, to the randomly generated pixel field. The application then blends the grain field with the original image by adjusting each pixel based on the value of the corresponding pixel location in the grain field. The application then adjusts the grain amount in the previously generated full-grain image by receiving a grain amount value from a user and applying this value to the full-grain image.
Abstract:
A method and apparatus for generating a grayscale image. The method and apparatus receive a single value. From the single value, the method and apparatus generate a set of grayscale weighting values. The method and apparatus generate the grayscale based on a color image and the set of grayscale weighting values. By limiting the number of values to a single value, the method and apparatus prevents a user from arbitrarily selecting a number of possible weighting values which could result in a grayscale image that is too dim or too bright. This single control method and apparatus quickly and efficiently produces a grayscale image that is neither too bright nor too dim.
Abstract:
A method for generating and/or modifying a grayscale image. The method receives a color image. The method generates an initial grayscale image based on attributes of the color image. The method generates a set of hue values for all the pixels in the grayscale image based on color values of the pixels in the color image. The method defines a hue curve across the range of hue values based on input received from a user interface control. The method modifies the grayscale image based on the hue values and the defined hue curve across the range of hue values.