Abstract:
A display apparatus and a driving method of a display panel thereof are disclosed. The display apparatus includes the display panel and a common voltage setting circuit. The display panel has a plurality of pixels and a plurality of common electrode lines and receives a plurality of pixel voltages. Each of the pixels is coupled to the corresponding common electrode line and receives the corresponding pixel voltage. The common voltage setting circuit is coupled to the common electrode lines. A common voltage having a normal voltage level is supplied to the common electrode lines during a first frame period. The common voltage having a complementary high voltage level or a complementary low voltage level is supplied to the common electrode lines during a second frame period. Each of the pixels receives the same pixel voltage during the first frame period and the second frame period.
Abstract:
The light emitting diode display apparatus including a first substrate, a plurality of light emitting diodes, an adhesive layer, a color layer, and a second substrate is provided. The first substrate has a plurality of switching elements. The light emitting diode includes a first semiconductor layer, a plurality of second semiconductor layers, a plurality of light emitting layers, a first electrode, and a plurality of second electrodes. The first electrode is disposed on the first semiconductor layer. The second electrodes are respectively disposed on the corresponding second semiconductor layers. Each of the second electrodes is electrically connected to the corresponding switching element. The adhesive layer and the first substrate are respectively located at two opposite sides of the light emitting diode. The color layer is disposed on the first substrate and covers the adhesive layer and the light emitting diode. The second substrate is disposed opposite to the first substrate.
Abstract:
A display device includes a substrate, a first data line, a scan line, a first sub-pixel, a passivation layer, and a common electrode. The first sub-pixel includes a first main-driving element, a first sub-driving element, a first capacitor electrode, and a first pixel electrode. The first main-driving element includes a first main-gate, a first main-channel layer, a first main-source, and a first main-drain. The first sub-driving element includes a first sub-gate, a first sub-channel layer, a first sub-source, and a first sub-drain. The first capacitor electrode is electrically connected with the first main-drain and the first sub-source. The first pixel electrode is electrically connected with the first sub-drain. The common electrode and the first capacitor electrode have a first main capacitor therebetween. The common electrode and the first pixel electrode have a first sub capacitor therebetween.
Abstract:
An array substrate includes three first conductive lines, three second conductive lines, and four switches. The three first conductive lines are sequentially and consecutively arranged along a direction, and the three second conductive lines are sequentially and consecutively arranged along another direction and intersect the first conductive lines. The four switches are respectively connected to the corresponding first conductive lines and the corresponding second conductive lines. Two of the switches are connected to the second one of the first conductive lines and are substantially located between two adjacent second conductive lines, and the other two of the switches are not connected to the second one of the first conductive lines and are substantially located between the other two adjacent second conductive lines.
Abstract:
A liquid crystal display apparatus includes an array substrate, a liquid crystal layer, and an opposite substrate. The array substrate includes a first pixel and a second pixel. The first pixel includes a first active device and a first pixel electrode. The first pixel electrode is electrically connected to the first active device via a first through-hole. The first pixel electrode includes a plurality of first electrode strips extended along a first direction. The first through-hole is located at a first corner of the first pixel electrode. The second pixel includes a second active device and a second pixel electrode. The second pixel electrode is connected to the second active device via a second through-hole. The second pixel electrode includes a plurality of second electrode strips extended along a second direction. The second through-hole is located at a second corner of the second pixel electrode. A virtual straight line connecting between the first corner and the second corner is substantially not parallel to the first direction.
Abstract:
A liquid crystal display panel including first and second substrates, a sub-pixel row, first and second control electrodes is provided. The sub-pixel row is disposed on the first substrate and includes first, second and third sub-pixels arranged in sequence along a first direction, the polarity of the first sub-pixel and the polarity of third sub-pixel are the same, the polarity of the second sub-pixel is different from the polarities of the first and third sub-pixels, each of the first to third sub-pixels has a first region and a second region arranged along a second direction, and includes an electrode having a first slit pattern and a second slit pattern respectively located in the first region and the second region, wherein the extending direction of the first slit pattern is different from that of the second slit pattern, and the extending directions of the first slit patterns of two adjacent electrodes are different. The first and second control electrodes having different polarities are disposed on the second substrate and respectively overlap the first and the second regions.
Abstract:
A display panel is divided into a first region and a second region located outside the first region, and includes a first sub-pixel, a second sub-pixel, a plurality of scan lines, a first common line, a second common line, and a black matrix. In the first sub-pixel, a first distance exists between the first common line and a neighboring scan line along a second direction. In the second sub-pixel, a second distance exists between the second common line and a neighboring scan line along the second direction, and the first distance is not equal to the second distance. The black matrix has a plurality of holes, including a first hole and a second hole. The first hole exposes the first sub-pixel and the first common line located in the first region. The second hole exposes the second sub-pixel and the second common line located in the second region.
Abstract:
In one aspect of the invention, a pixel structure comprises a substrate and a first electrode disposed on the substrate, a first dielectric layer disposed on the first electrode, and a second electrode disposed on the first dielectric layer. The second electrode comprises a pair of first electrode strips and a second electrode strip disposed between the pair of first electrode strips. Each first electrode strip has a width W1, and the second electrode strip has a width W2 that is different from the width W1 along a first direction. In one embodiment, the first electrode strip width W1 and the second electrode strip width W2 are constant along a second direction that is different from the first direction. In another embodiment, the first electrode strip width W1 and the second electrode strip width W2 are variable along the second direction.
Abstract:
A color filter is provided. The color filter includes a plurality of first color filter patterns, a plurality of second color filter patterns, a plurality of third color filter patterns and an auxiliary light-shielding layer. The auxiliary light-shielding layer is located on boundaries between the first color filter patterns and the second color filter patterns. A light absorption wavelength range of the auxiliary light-shielding layer is the same as that of the first, second, or third color filter patterns.